@ -647,13 +647,8 @@ class Predict(GNet):
info [ ' ratio ' ] = __ratio
info [ ' ratio ' ] = __ratio
info [ ' partition ' ] = self . PARTITION
info [ ' partition ' ] = self . PARTITION
self . logger . write ( { " module " : " gan-generate " , " action " : " generate " , " input " : info } )
self . logger . write ( { " module " : " gan-generate " , " action " : " generate " , " input " : info } )
df . columns = self . values
# df.columns = self.values
if len ( found ) or df . columns . size == len ( self . values ) :
if len ( found ) or df . columns . size < = len ( self . values ) :
# print (len(found),NTH_VALID_CANDIDATE)
# x = df * self.values
#
# let's get the missing rows (if any) ...
#
ii = df . apply ( lambda row : np . sum ( row ) == 0 , axis = 1 )
ii = df . apply ( lambda row : np . sum ( row ) == 0 , axis = 1 )
# print ([' **** ',ii.sum()])
# print ([' **** ',ii.sum()])
@ -669,6 +664,8 @@ class Predict(GNet):
# Log the findings here in terms of ratio, missing, candidate count
# Log the findings here in terms of ratio, missing, candidate count
# print ([np.max(ratio),len(missing),len(found),i])
# print ([np.max(ratio),len(missing),len(found),i])
i = np . where ( ii == 0 ) [ 0 ]
i = np . where ( ii == 0 ) [ 0 ]
df = pd . DataFrame ( df . iloc [ i ] . apply ( lambda row : self . values [ np . random . choice ( np . where ( row != 0 ) [ 0 ] , 1 ) [ 0 ] ] , axis = 1 ) )
df = pd . DataFrame ( df . iloc [ i ] . apply ( lambda row : self . values [ np . random . choice ( np . where ( row != 0 ) [ 0 ] , 1 ) [ 0 ] ] , axis = 1 ) )
df . columns = columns
df . columns = columns
df = df [ columns [ 0 ] ] . append ( pd . Series ( missing ) )
df = df [ columns [ 0 ] ] . append ( pd . Series ( missing ) )