@ -647,13 +647,8 @@ class Predict(GNet):
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                                        info [ ' ratio ' ]  =  __ratio 
 
					 
					 
					 
					                                        info [ ' ratio ' ]  =  __ratio 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                                info [ ' partition ' ]  =  self . PARTITION 
 
					 
					 
					 
					                                info [ ' partition ' ]  =  self . PARTITION 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                                self . logger . write ( { " module " : " gan-generate " , " action " : " generate " , " input " : info } ) 
 
					 
					 
					 
					                                self . logger . write ( { " module " : " gan-generate " , " action " : " generate " , " input " : info } ) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                        df . columns  =  self . values 
 
					 
					 
					 
					                        # df.columns = self.values 
 
				
			 
			
				
				
			
		
	
		
		
			
				
					
					 
					 
					 
					                        if  len ( found )  or  df . columns . size  ==  len ( self . values ) : 
 
					 
					 
					 
					                        if  len ( found )  or  df . columns . size  < =  len ( self . values ) : 
 
				
			 
			
				
				
			
		
	
		
		
			
				
					
					 
					 
					 
					                                # print (len(found),NTH_VALID_CANDIDATE)     
 
					 
					 
					 
					 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                                # x = df * self.values  
 
					 
					 
					 
					 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                                # 
 
					 
					 
					 
					 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                                # let's get the missing rows (if any) ... 
 
					 
					 
					 
					 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                                # 
 
					 
					 
					 
					 
				
			 
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					 
					 
					 
					                                ii  =  df . apply ( lambda  row :  np . sum ( row )  ==  0  , axis = 1 ) 
 
					 
					 
					 
					                                ii  =  df . apply ( lambda  row :  np . sum ( row )  ==  0  , axis = 1 ) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                                # print ([' **** ',ii.sum()]) 
 
					 
					 
					 
					                                # print ([' **** ',ii.sum()]) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					
 
					 
					 
					 
					
 
				
			 
			
		
	
	
		
		
			
				
					
						
						
						
							
								 
							 
						
					 
					 
					@ -669,6 +664,8 @@ class Predict(GNet):
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                                #       Log the findings here in terms of ratio, missing, candidate count 
 
					 
					 
					 
					                                #       Log the findings here in terms of ratio, missing, candidate count 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                                # print ([np.max(ratio),len(missing),len(found),i]) 
 
					 
					 
					 
					                                # print ([np.max(ratio),len(missing),len(found),i]) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                                i  =  np . where ( ii  ==  0 ) [ 0 ] 
 
					 
					 
					 
					                                i  =  np . where ( ii  ==  0 ) [ 0 ] 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					                                
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					                                
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                                df  =   pd . DataFrame (  df . iloc [ i ] . apply ( lambda  row :  self . values [ np . random . choice ( np . where ( row  !=  0 ) [ 0 ] , 1 ) [ 0 ] ]  , axis = 1 ) ) 
 
					 
					 
					 
					                                df  =   pd . DataFrame (  df . iloc [ i ] . apply ( lambda  row :  self . values [ np . random . choice ( np . where ( row  !=  0 ) [ 0 ] , 1 ) [ 0 ] ]  , axis = 1 ) ) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                                df . columns  =  columns 
 
					 
					 
					 
					                                df . columns  =  columns 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                                df  =  df [ columns [ 0 ] ] . append ( pd . Series ( missing ) ) 
 
					 
					 
					 
					                                df  =  df [ columns [ 0 ] ] . append ( pd . Series ( missing ) )