@ -245,15 +245,12 @@ class Discriminator(GNet):
: label
: label
"""
"""
x = args [ ' inputs ' ]
x = args [ ' inputs ' ]
print ( )
print ( x [ : 3 , : ] )
print ( )
label = args [ ' label ' ]
label = args [ ' label ' ]
with tf . compat . v1 . variable_scope ( ' D ' , reuse = tf . compat . v1 . AUTO_REUSE , regularizer = l2_regularizer ( 0.00001 ) ) :
with tf . compat . v1 . variable_scope ( ' D ' , reuse = tf . compat . v1 . AUTO_REUSE , regularizer = l2_regularizer ( 0.00001 ) ) :
for i , dim in enumerate ( self . D_STRUCTURE [ 1 : ] ) :
for i , dim in enumerate ( self . D_STRUCTURE [ 1 : ] ) :
kernel = self . get . variables ( name = ' W_ ' + str ( i ) , shape = [ self . D_STRUCTURE [ i ] , dim ] )
kernel = self . get . variables ( name = ' W_ ' + str ( i ) , shape = [ self . D_STRUCTURE [ i ] , dim ] )
bias = self . get . variables ( name = ' b_ ' + str ( i ) , shape = [ dim ] )
bias = self . get . variables ( name = ' b_ ' + str ( i ) , shape = [ dim ] )
print ( [ " \t " , bias , kernel ] )
# print (["\t",bias,kernel] )
x = tf . nn . relu ( tf . add ( tf . matmul ( x , kernel ) , bias ) )
x = tf . nn . relu ( tf . add ( tf . matmul ( x , kernel ) , bias ) )
x = self . normalize ( inputs = x , name = ' cln ' + str ( i ) , shift = 1 , labels = label , n_labels = self . NUM_LABELS )
x = self . normalize ( inputs = x , name = ' cln ' + str ( i ) , shift = 1 , labels = label , n_labels = self . NUM_LABELS )
i = len ( self . D_STRUCTURE )
i = len ( self . D_STRUCTURE )
@ -538,6 +535,7 @@ if __name__ == '__main__' :
# Now we get things done ...
# Now we get things done ...
column = SYS_ARGS [ ' column ' ]
column = SYS_ARGS [ ' column ' ]
column_id = SYS_ARGS [ ' id ' ] if ' id ' in SYS_ARGS else ' person_id '
column_id = SYS_ARGS [ ' id ' ] if ' id ' in SYS_ARGS else ' person_id '
column_id = column_id . split ( ' , ' ) if ' , ' in column_id else column_id
df = pd . read_csv ( SYS_ARGS [ ' raw-data ' ] )
df = pd . read_csv ( SYS_ARGS [ ' raw-data ' ] )
LABEL = pd . get_dummies ( df [ column_id ] ) . astype ( np . float32 ) . values
LABEL = pd . get_dummies ( df [ column_id ] ) . astype ( np . float32 ) . values