@ -245,15 +245,12 @@ class Discriminator(GNet):
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        : label 
 
					 
					 
					 
					        : label 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        """ 
 
					 
					 
					 
					        """ 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        x  =  args [ ' inputs ' ] 
 
					 
					 
					 
					        x  =  args [ ' inputs ' ] 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        print  ( ) 
 
					 
					 
					 
					 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        print  ( x [ : 3 , : ] ) 
 
					 
					 
					 
					 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        print ( ) 
 
					 
					 
					 
					 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        label  =  args [ ' label ' ] 
 
					 
					 
					 
					        label  =  args [ ' label ' ] 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        with  tf . compat . v1 . variable_scope ( ' D ' ,  reuse = tf . compat . v1 . AUTO_REUSE  ,  regularizer = l2_regularizer ( 0.00001 ) ) : 
 
					 
					 
					 
					        with  tf . compat . v1 . variable_scope ( ' D ' ,  reuse = tf . compat . v1 . AUTO_REUSE  ,  regularizer = l2_regularizer ( 0.00001 ) ) : 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					            for  i ,  dim  in  enumerate ( self . D_STRUCTURE [ 1 : ] ) : 
 
					 
					 
					 
					            for  i ,  dim  in  enumerate ( self . D_STRUCTURE [ 1 : ] ) : 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                kernel  =  self . get . variables ( name = ' W_ '  +  str ( i ) ,  shape = [ self . D_STRUCTURE [ i ] ,  dim ] ) 
 
					 
					 
					 
					                kernel  =  self . get . variables ( name = ' W_ '  +  str ( i ) ,  shape = [ self . D_STRUCTURE [ i ] ,  dim ] ) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                bias  =  self . get . variables ( name = ' b_ '  +  str ( i ) ,  shape = [ dim ] ) 
 
					 
					 
					 
					                bias  =  self . get . variables ( name = ' b_ '  +  str ( i ) ,  shape = [ dim ] ) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                print  ( [ " \t " , bias , kernel ]  )
 
					 
					 
					 
					                # print (["\t",bias,kernel]  )
 
				
			 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 
					 
					 
					                x  =  tf . nn . relu ( tf . add ( tf . matmul ( x ,  kernel ) ,  bias ) ) 
 
					 
					 
					 
					                x  =  tf . nn . relu ( tf . add ( tf . matmul ( x ,  kernel ) ,  bias ) ) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					                x  =  self . normalize ( inputs = x ,  name = ' cln '  +  str ( i ) ,  shift = 1 , labels = label ,  n_labels = self . NUM_LABELS ) 
 
					 
					 
					 
					                x  =  self . normalize ( inputs = x ,  name = ' cln '  +  str ( i ) ,  shift = 1 , labels = label ,  n_labels = self . NUM_LABELS ) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					            i  =  len ( self . D_STRUCTURE ) 
 
					 
					 
					 
					            i  =  len ( self . D_STRUCTURE ) 
 
				
			 
			
		
	
	
		
		
			
				
					
						
							
								 
							 
						
						
							
								 
							 
						
						
					 
					 
					@ -538,6 +535,7 @@ if __name__ == '__main__' :
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					    # Now we get things done ... 
 
					 
					 
					 
					    # Now we get things done ... 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					    column       =  SYS_ARGS [ ' column ' ] 
 
					 
					 
					 
					    column       =  SYS_ARGS [ ' column ' ] 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					    column_id    =  SYS_ARGS [ ' id ' ]  if  ' id '  in  SYS_ARGS  else  ' person_id ' 
 
					 
					 
					 
					    column_id    =  SYS_ARGS [ ' id ' ]  if  ' id '  in  SYS_ARGS  else  ' person_id ' 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					    column_id    =  column_id . split ( ' , ' )  if  ' , '  in  column_id  else  column_id 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					    df  =  pd . read_csv ( SYS_ARGS [ ' raw-data ' ] )   
 
					 
					 
					 
					    df  =  pd . read_csv ( SYS_ARGS [ ' raw-data ' ] )   
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					    LABEL  =  pd . get_dummies ( df [ column_id ] ) . astype ( np . float32 ) . values 
 
					 
					 
					 
					    LABEL  =  pd . get_dummies ( df [ column_id ] ) . astype ( np . float32 ) . values