Steve L. Nyemba 4 years ago
parent f65b082fb1
commit 62a665464d

@ -604,7 +604,7 @@ class Predict(GNet):
# df = pd.DataFrame(np.round(f)).astype(np.int32) # df = pd.DataFrame(np.round(f)).astype(np.int32)
# candidates.append (np.round(_matrix).astype(np.int64)) # candidates.append (np.round(_matrix).astype(np.int64))
candidates.append( [np.round(row).astype(int) for row in _matrix]) candidates.append(np.array([np.round(row).astype(int) for row in _matrix]))
# return candidates[0] if len(candidates) == 1 else candidates # return candidates[0] if len(candidates) == 1 else candidates
return candidates return candidates

@ -111,13 +111,13 @@ class Input :
if 'columns' in _args : if 'columns' in _args :
self._columns = _args['columns'] self._columns = _args['columns']
else: # else:
# #
# We will look into the count and make a judgment call # We will look into the count and make a judgment call
_df = pd.DataFrame(self.df.apply(lambda col: col.dropna().unique().size )).T _df = pd.DataFrame(self.df.apply(lambda col: col.dropna().unique().size )).T
MIN_SPACE_SIZE = 2 MIN_SPACE_SIZE = 2
self._columns = cols if cols else _df.apply(lambda col:None if col[0] == row_count or col[0] < MIN_SPACE_SIZE else col.name).dropna().tolist() self._columns = cols if cols else _df.apply(lambda col:None if col[0] == row_count or col[0] < MIN_SPACE_SIZE else col.name).dropna().tolist()
self._io = _df.to_dict(orient='records') self._io = _df.to_dict(orient='records')
def _initdata(self,**_args): def _initdata(self,**_args):
""" """

Loading…
Cancel
Save