|
|
@ -111,13 +111,13 @@ class Input :
|
|
|
|
|
|
|
|
|
|
|
|
if 'columns' in _args :
|
|
|
|
if 'columns' in _args :
|
|
|
|
self._columns = _args['columns']
|
|
|
|
self._columns = _args['columns']
|
|
|
|
else:
|
|
|
|
# else:
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# We will look into the count and make a judgment call
|
|
|
|
# We will look into the count and make a judgment call
|
|
|
|
_df = pd.DataFrame(self.df.apply(lambda col: col.dropna().unique().size )).T
|
|
|
|
_df = pd.DataFrame(self.df.apply(lambda col: col.dropna().unique().size )).T
|
|
|
|
MIN_SPACE_SIZE = 2
|
|
|
|
MIN_SPACE_SIZE = 2
|
|
|
|
self._columns = cols if cols else _df.apply(lambda col:None if col[0] == row_count or col[0] < MIN_SPACE_SIZE else col.name).dropna().tolist()
|
|
|
|
self._columns = cols if cols else _df.apply(lambda col:None if col[0] == row_count or col[0] < MIN_SPACE_SIZE else col.name).dropna().tolist()
|
|
|
|
self._io = _df.to_dict(orient='records')
|
|
|
|
self._io = _df.to_dict(orient='records')
|
|
|
|
|
|
|
|
|
|
|
|
def _initdata(self,**_args):
|
|
|
|
def _initdata(self,**_args):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|