parent
278636bb14
commit
de47356a62
@ -0,0 +1,32 @@
|
||||
"""
|
||||
This file is intended to perfom certain machine learning tasks based on numpy
|
||||
We are trying to keep it lean that's why no sklearn involved yet
|
||||
"""
|
||||
import numpy as np
|
||||
|
||||
class ML:
|
||||
@staticmethod
|
||||
def Filter (attr,value,data) :
|
||||
#
|
||||
# @TODO: Make sure this approach works across all transport classes
|
||||
# We may have a potential issue of how the data is stored ... it may not scale
|
||||
#
|
||||
return [item[0] for item in data if item[0][attr] == value]
|
||||
@staticmethod
|
||||
def Extract(lattr,data):
|
||||
return [[row[id] for id in lattr] for row in data]
|
||||
|
||||
def init(self,lattr,data):
|
||||
self.lattr = attr
|
||||
self.data = data
|
||||
self.X = []
|
||||
self.Xmeans = []
|
||||
for id in lattr:
|
||||
xvalues = [item for item in self.data[id]]
|
||||
self.Xmeans.append(np.mean(xvalues))
|
||||
self.X.append(xvalues)
|
||||
slef.Xcov = np.cov(self.X)
|
||||
#
|
||||
# Let's get the covariance matrix here ...
|
||||
#
|
||||
|
Loading…
Reference in new issue