parent
278636bb14
commit
de47356a62
@ -0,0 +1,32 @@
|
|||||||
|
"""
|
||||||
|
This file is intended to perfom certain machine learning tasks based on numpy
|
||||||
|
We are trying to keep it lean that's why no sklearn involved yet
|
||||||
|
"""
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class ML:
|
||||||
|
@staticmethod
|
||||||
|
def Filter (attr,value,data) :
|
||||||
|
#
|
||||||
|
# @TODO: Make sure this approach works across all transport classes
|
||||||
|
# We may have a potential issue of how the data is stored ... it may not scale
|
||||||
|
#
|
||||||
|
return [item[0] for item in data if item[0][attr] == value]
|
||||||
|
@staticmethod
|
||||||
|
def Extract(lattr,data):
|
||||||
|
return [[row[id] for id in lattr] for row in data]
|
||||||
|
|
||||||
|
def init(self,lattr,data):
|
||||||
|
self.lattr = attr
|
||||||
|
self.data = data
|
||||||
|
self.X = []
|
||||||
|
self.Xmeans = []
|
||||||
|
for id in lattr:
|
||||||
|
xvalues = [item for item in self.data[id]]
|
||||||
|
self.Xmeans.append(np.mean(xvalues))
|
||||||
|
self.X.append(xvalues)
|
||||||
|
slef.Xcov = np.cov(self.X)
|
||||||
|
#
|
||||||
|
# Let's get the covariance matrix here ...
|
||||||
|
#
|
||||||
|
|
Loading…
Reference in new issue