parent
							
								
									278636bb14
								
							
						
					
					
						commit
						de47356a62
					
				@ -0,0 +1,32 @@
 | 
				
			||||
"""
 | 
				
			||||
	This file is intended to perfom certain machine learning tasks based on numpy
 | 
				
			||||
	We are trying to keep it lean that's why no sklearn involved yet
 | 
				
			||||
"""
 | 
				
			||||
import numpy as np
 | 
				
			||||
 | 
				
			||||
class ML:
 | 
				
			||||
	@staticmethod
 | 
				
			||||
	def Filter (attr,value,data) :
 | 
				
			||||
		#
 | 
				
			||||
		# @TODO: Make sure this approach works across all transport classes
 | 
				
			||||
		# We may have a potential issue of how the data is stored ... it may not scale
 | 
				
			||||
		#
 | 
				
			||||
		return [item[0] for item in data if item[0][attr] == value]
 | 
				
			||||
	@staticmethod
 | 
				
			||||
	def Extract(lattr,data):
 | 
				
			||||
		return [[row[id] for id in lattr] for row in data]
 | 
				
			||||
 | 
				
			||||
	def init(self,lattr,data):
 | 
				
			||||
		self.lattr = attr
 | 
				
			||||
		self.data = data
 | 
				
			||||
		self.X = []
 | 
				
			||||
		self.Xmeans = []
 | 
				
			||||
		for id in lattr:
 | 
				
			||||
			xvalues = [item for item in self.data[id]]
 | 
				
			||||
			self.Xmeans.append(np.mean(xvalues))
 | 
				
			||||
			self.X.append(xvalues)
 | 
				
			||||
		slef.Xcov = np.cov(self.X)
 | 
				
			||||
		#
 | 
				
			||||
		# Let's get the covariance matrix here ...
 | 
				
			||||
		#
 | 
				
			||||
	
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue