experimentation ...

master
Steve L. Nyemba 8 years ago
parent 537f359527
commit 61bbb2c5d2

@ -0,0 +1,13 @@
0.0,4.5
0.0,4.5
11.6,4.4
12.2,4.3
1.4,3.9
1.4,3.9
2.5,3.8
0.1,3.8
0.5,5.1
0.7,5.2
0.7,5.1
0.0,4.6
0.0,4.6
1 0.0 4.5
2 0.0 4.5
3 11.6 4.4
4 12.2 4.3
5 1.4 3.9
6 1.4 3.9
7 2.5 3.8
8 0.1 3.8
9 0.5 5.1
10 0.7 5.2
11 0.7 5.1
12 0.0 4.6
13 0.0 4.6

@ -1,25 +1,27 @@
import numpy as np
m = [[0.0, 4.5], [0.0, 4.5], [11.6, 4.4], [12.2, 4.3], [1.4, 3.9], [1.4, 3.9], [2.5, 3.8], [0.1, 3.8], [0.5, 5.1], [0.7, 5.2], [0.7, 5.1], [0.0, 4.6], [0.0, 4.6]]
m = np.transpose(np.array(m))
xu_ = np.mean(m[1,:])
yu_ = np.mean(m[0,:])
m_ = np.array(m)
x_ = np.mean(m_[:,0])
y_ = np.mean(m_[:,1])
u = np.array([x_,y_])
r = [np.sqrt(np.var(m_[:,0])),np.sqrt(np.var(m_[:,1]))]
x__ = (m_[:,0] - x_ )/r[0]
y__ = (m_[:,1] - y_ )/r[1]
nm = np.matrix([x__,y__])
cx = np.cov(nm)
print cx.shape
x = np.array([1.9,3])
n = 2
a = 1/ np.sqrt((2*np.pi**k)*np.det(cx))
b = np.exp(() )
#from scipy.stats import multivariate_normal
#print multivariate_normal.pdf(x,u,cx)
xr_ = np.sqrt(np.var(m[0,:]))
yr_ = np.sqrt(np.var(m[1,:]))
#
# -- normalizing the matrix before computing covariance
#
mn = np.array([list( (m[0,:]-xu_)/xr_),list( (m[1,:]-yu_)/yr_)])
cx = np.cov(mn)
n = m.shape[0]
x = np.array([2.5,3.1])
u = np.array([xu_,yu_])
d = np.matrix(x - u)
d.shape = (n,1)
a = (2*(np.pi)**(n/2))*np.linalg.det(cx)**0.5
b = np.exp(-0.5*np.transpose(d) * (cx**-1)*d)
from scipy.stats import multivariate_normal
xo= multivariate_normal.pdf(x,u,cx)
yo= (b/a)[0,0]
for row in np.transpose(m):
print ",".join([str(value) for value in row])
#-- We are ready to perform anomaly detection ...

Loading…
Cancel
Save