parent
537f359527
commit
61bbb2c5d2
|
@ -1,25 +1,27 @@
|
||||
import numpy as np
|
||||
m = [[0.0, 4.5], [0.0, 4.5], [11.6, 4.4], [12.2, 4.3], [1.4, 3.9], [1.4, 3.9], [2.5, 3.8], [0.1, 3.8], [0.5, 5.1], [0.7, 5.2], [0.7, 5.1], [0.0, 4.6], [0.0, 4.6]]
|
||||
m = np.transpose(np.array(m))
|
||||
xu_ = np.mean(m[1,:])
|
||||
yu_ = np.mean(m[0,:])
|
||||
|
||||
m_ = np.array(m)
|
||||
x_ = np.mean(m_[:,0])
|
||||
y_ = np.mean(m_[:,1])
|
||||
u = np.array([x_,y_])
|
||||
r = [np.sqrt(np.var(m_[:,0])),np.sqrt(np.var(m_[:,1]))]
|
||||
x__ = (m_[:,0] - x_ )/r[0]
|
||||
y__ = (m_[:,1] - y_ )/r[1]
|
||||
|
||||
nm = np.matrix([x__,y__])
|
||||
|
||||
|
||||
cx = np.cov(nm)
|
||||
print cx.shape
|
||||
x = np.array([1.9,3])
|
||||
n = 2
|
||||
a = 1/ np.sqrt((2*np.pi**k)*np.det(cx))
|
||||
b = np.exp(() )
|
||||
#from scipy.stats import multivariate_normal
|
||||
#print multivariate_normal.pdf(x,u,cx)
|
||||
|
||||
xr_ = np.sqrt(np.var(m[0,:]))
|
||||
yr_ = np.sqrt(np.var(m[1,:]))
|
||||
#
|
||||
# -- normalizing the matrix before computing covariance
|
||||
#
|
||||
mn = np.array([list( (m[0,:]-xu_)/xr_),list( (m[1,:]-yu_)/yr_)])
|
||||
cx = np.cov(mn)
|
||||
n = m.shape[0]
|
||||
x = np.array([2.5,3.1])
|
||||
u = np.array([xu_,yu_])
|
||||
d = np.matrix(x - u)
|
||||
d.shape = (n,1)
|
||||
a = (2*(np.pi)**(n/2))*np.linalg.det(cx)**0.5
|
||||
b = np.exp(-0.5*np.transpose(d) * (cx**-1)*d)
|
||||
|
||||
from scipy.stats import multivariate_normal
|
||||
xo= multivariate_normal.pdf(x,u,cx)
|
||||
yo= (b/a)[0,0]
|
||||
for row in np.transpose(m):
|
||||
print ",".join([str(value) for value in row])
|
||||
#-- We are ready to perform anomaly detection ...
|
||||
|
Loading…
Reference in new issue