| 
						
						
							
								
							
						
						
					 | 
					 | 
					@ -12,16 +12,19 @@ yr_ = np.sqrt(np.var(m[1,:]))
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					mn = np.array([list( (m[0,:]-xu_)/xr_),list( (m[1,:]-yu_)/yr_)])
 | 
					 | 
					 | 
					 | 
					mn = np.array([list( (m[0,:]-xu_)/xr_),list( (m[1,:]-yu_)/yr_)])
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					cx = np.cov(mn)
 | 
					 | 
					 | 
					 | 
					cx = np.cov(mn)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					n = m.shape[0]
 | 
					 | 
					 | 
					 | 
					n = m.shape[0]
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					x = np.array([2.5,3.1])
 | 
					 | 
					 | 
					 | 
					x = np.array([2.4,3.1])
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					u = np.array([xu_,yu_])
 | 
					 | 
					 | 
					 | 
					u = np.array([xu_,yu_])
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					d = np.matrix(x - u)
 | 
					 | 
					 | 
					 | 
					d = np.matrix(x - u)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					d.shape = (n,1)
 | 
					 | 
					 | 
					 | 
					d.shape = (n,1)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					a  = (2*(np.pi)**(n/2))*np.linalg.det(cx)**0.5
 | 
					 | 
					 | 
					 | 
					a  = (2*(np.pi)**(n/2))*np.linalg.det(cx)**0.5
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					b = np.exp(-0.5*np.transpose(d) * (cx**-1)*d)
 | 
					 | 
					 | 
					 | 
					b = np.exp((-0.5*np.transpose(d)) * (np.linalg.inv(cx)*d))
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					from scipy.stats import multivariate_normal
 | 
					 | 
					 | 
					 | 
					from scipy.stats import multivariate_normal
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					xo= multivariate_normal.pdf(x,u,cx)
 | 
					 | 
					 | 
					 | 
					xo= multivariate_normal.pdf(x,u,cx)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					yo= (b/a)[0,0]
 | 
					 | 
					 | 
					 | 
					yo= (b/a)[0,0]
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					for row in np.transpose(m):
 | 
					 | 
					 | 
					 | 
					e= 0.001
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
						print ",".join([str(value) for value in row])
 | 
					 | 
					 | 
					 | 
					print [yo,yo < e]
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					print [xo,xo < e]
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					#for row in np.transpose(m):
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					#	print ",".join([str(value) for value in row])
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					#-- We are ready to perform anomaly detection ...
 | 
					 | 
					 | 
					 | 
					#-- We are ready to perform anomaly detection ...
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
						
						
					 | 
					 | 
					
 
 |