parent
							
								
									2884f3d78b
								
							
						
					
					
						commit
						278636bb14
					
				@ -0,0 +1,43 @@
 | 
				
			||||
from utils import transport
 | 
				
			||||
from utils.ml import ML
 | 
				
			||||
import unittest
 | 
				
			||||
import json
 | 
				
			||||
import os
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
path = os.environ['MONITOR_CONFIG_PATH']
 | 
				
			||||
f = open(path)
 | 
				
			||||
CONFIG = json.loads( f.read())
 | 
				
			||||
f.close()
 | 
				
			||||
factory = transport.DataSourceFactory()
 | 
				
			||||
#greader = factory.instance(type=ref,args=p)
 | 
				
			||||
 | 
				
			||||
class TestML(unittest.TestCase):
 | 
				
			||||
	def setUp(self):
 | 
				
			||||
		
 | 
				
			||||
		ref = CONFIG['store']['class']['read']
 | 
				
			||||
		p = CONFIG['store']['args']
 | 
				
			||||
		p['qid'] = ['apps']
 | 
				
			||||
		self.greader = factory.instance(type=ref,args=p)
 | 
				
			||||
	def test_has_date(self):
 | 
				
			||||
		r = self.greader.read()
 | 
				
			||||
		
 | 
				
			||||
		self.assertTrue(r)
 | 
				
			||||
	def test_Filter(self):
 | 
				
			||||
		r = self.greader.read()
 | 
				
			||||
		r = r['apps']
 | 
				
			||||
		x = ML.Filter('label','Google Chrome',r)
 | 
				
			||||
		for row in x:
 | 
				
			||||
			self.assertTrue(row['label'] == 'Google Chrome')
 | 
				
			||||
	def test_Extract(self):
 | 
				
			||||
		r = self.greader.read()
 | 
				
			||||
		r = r['apps']
 | 
				
			||||
		x = ML.Filter('label','Google Chrome',r)
 | 
				
			||||
		x_ = ML.Extract(['cpu_usage','memory_usage'], x)
 | 
				
			||||
		print x[0]
 | 
				
			||||
		print x_
 | 
				
			||||
		pass
 | 
				
			||||
		
 | 
				
			||||
 | 
				
			||||
if __name__ == '__main__' :
 | 
				
			||||
	unittest.main()
 | 
				
			||||
@ -0,0 +1,24 @@
 | 
				
			||||
import numpy as np
 | 
				
			||||
m = [[0.0, 4.5], [0.0, 4.5], [11.6, 4.4], [12.2, 4.3], [1.4, 3.9], [1.4, 3.9], [2.5, 3.8], [0.1, 3.8], [0.5, 5.1], [0.7, 5.2], [0.7, 5.1], [0.0, 4.6], [0.0, 4.6]]
 | 
				
			||||
 | 
				
			||||
m_ = np.array(m)
 | 
				
			||||
x_ = np.mean(m_[:,0])
 | 
				
			||||
y_ = np.mean(m_[:,1])
 | 
				
			||||
u = np.array([x_,y_])
 | 
				
			||||
r = [np.sqrt(np.var(m_[:,0])),np.sqrt(np.var(m_[:,1]))]
 | 
				
			||||
x__ = (m_[:,0] - x_ )/r[0]
 | 
				
			||||
y__ = (m_[:,1] - y_ )/r[1]
 | 
				
			||||
 | 
				
			||||
nm = np.matrix([x__,y__])
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
cx = np.cov(nm)
 | 
				
			||||
print cx.shape
 | 
				
			||||
x = np.array([1.9,3])
 | 
				
			||||
 | 
				
			||||
a = 1/ np.sqrt(2*np.pi)
 | 
				
			||||
#from scipy.stats import multivariate_normal
 | 
				
			||||
#print multivariate_normal.pdf(x,u,cx)
 | 
				
			||||
 | 
				
			||||
 | 
				
			||||
#-- We are ready to perform anomaly detection ...
 | 
				
			||||
					Loading…
					
					
				
		Reference in new issue