You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
150 lines
4.1 KiB
Plaintext
150 lines
4.1 KiB
Plaintext
{
|
|
"cells": [
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Writing data-transport plugins\n",
|
|
"\n",
|
|
"The data-transport plugins are designed to automate pre/post processing i.e\n",
|
|
"\n",
|
|
" - Read -> Post processing\n",
|
|
" - Write-> Pre processing\n",
|
|
" \n",
|
|
"In this example we will assume, data and write both pre/post processing to any supported infrastructure. We will equally show how to specify the plugins within a configuration file"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 1,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": [
|
|
"#\n",
|
|
"# Writing to Google Bigquery database\n",
|
|
"#\n",
|
|
"import transport\n",
|
|
"from transport import providers\n",
|
|
"import pandas as pd\n",
|
|
"import os\n",
|
|
"import shutil\n",
|
|
"#\n",
|
|
"#\n",
|
|
"\n",
|
|
"DATABASE = '/home/steve/tmp/demo.db3'\n",
|
|
"if os.path.exists(DATABASE) :\n",
|
|
" os.remove(DATABASE)\n",
|
|
"#\n",
|
|
"# \n",
|
|
"_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
|
|
"litew = transport.get.writer(provider=providers.SQLITE,database=DATABASE)\n",
|
|
"litew.write(_data,table='friends')"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"#### Reading from SQLite\n",
|
|
"\n",
|
|
"The cell below reads the data that has been written by the cell above and computes the average age from a plugin function we will write. \n",
|
|
"\n",
|
|
"- Basic read of the designated table (friends) created above\n",
|
|
"- Read with pipeline functions defined in code\n",
|
|
"\n",
|
|
"**NOTE**\n",
|
|
"\n",
|
|
"It is possible to use **transport.factory.instance** or **transport.instance** or **transport.get.<[reader|writer]>** they are the same. It allows the maintainers to know that we used a factory design pattern."
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": 4,
|
|
"metadata": {},
|
|
"outputs": [
|
|
{
|
|
"name": "stdout",
|
|
"output_type": "stream",
|
|
"text": [
|
|
" name age\n",
|
|
"0 James Bond 55\n",
|
|
"1 Steve Rogers 150\n",
|
|
"2 Steve Nyemba 44\n",
|
|
"\n",
|
|
"\n",
|
|
" name age autoinc\n",
|
|
"0 James Bond 5.5 0\n",
|
|
"1 Steve Rogers 15.0 1\n",
|
|
"2 Steve Nyemba 4.4 2\n"
|
|
]
|
|
}
|
|
],
|
|
"source": [
|
|
"\n",
|
|
"import transport\n",
|
|
"from transport import providers\n",
|
|
"import os\n",
|
|
"import numpy as np\n",
|
|
"def _autoincrement (_data,**kwargs) :\n",
|
|
" \"\"\"\n",
|
|
" This function will add an autoincrement field to the table\n",
|
|
" \"\"\"\n",
|
|
" _data['autoinc'] = np.arange(_data.shape[0])\n",
|
|
" \n",
|
|
" return _data\n",
|
|
"def reduce(_data,**_args) :\n",
|
|
" \"\"\"\n",
|
|
" This function will reduce the age of the data frame\n",
|
|
" \"\"\"\n",
|
|
" _data.age /= 10\n",
|
|
" return _data\n",
|
|
"reader = transport.get.reader(provider=providers.SQLITE,database=DATABASE,table='friends')\n",
|
|
"#\n",
|
|
"# basic read of the data created in the first cell\n",
|
|
"_df = reader.read()\n",
|
|
"print (_df)\n",
|
|
"print ()\n",
|
|
"print()\n",
|
|
"#\n",
|
|
"# read of the data with pipeline function provided to alter the database\n",
|
|
"print (reader.read(pipeline=[_autoincrement,reduce]))"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "markdown",
|
|
"metadata": {},
|
|
"source": [
|
|
"The parameters for instianciating a transport object (reader or writer) can be found at [data-transport home](https://healthcareio.the-phi.com/data-transport)\n"
|
|
]
|
|
},
|
|
{
|
|
"cell_type": "code",
|
|
"execution_count": null,
|
|
"metadata": {},
|
|
"outputs": [],
|
|
"source": []
|
|
}
|
|
],
|
|
"metadata": {
|
|
"kernelspec": {
|
|
"display_name": "Python 3",
|
|
"language": "python",
|
|
"name": "python3"
|
|
},
|
|
"language_info": {
|
|
"codemirror_mode": {
|
|
"name": "ipython",
|
|
"version": 3
|
|
},
|
|
"file_extension": ".py",
|
|
"mimetype": "text/x-python",
|
|
"name": "python",
|
|
"nbconvert_exporter": "python",
|
|
"pygments_lexer": "ipython3",
|
|
"version": "3.9.7"
|
|
}
|
|
},
|
|
"nbformat": 4,
|
|
"nbformat_minor": 2
|
|
}
|