|
|
|
@ -3,10 +3,13 @@ Data Transport - 1.0
|
|
|
|
|
Steve L. Nyemba, The Phi Technology LLC
|
|
|
|
|
|
|
|
|
|
This file is a wrapper around s3 bucket provided by AWS for reading and writing content
|
|
|
|
|
TODO:
|
|
|
|
|
- Address limitations that will properly read csv if it is stored with content type text/csv
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
from datetime import datetime
|
|
|
|
|
import boto
|
|
|
|
|
from boto.s3.connection import S3Connection, OrdinaryCallingFormat
|
|
|
|
|
import boto3
|
|
|
|
|
# from boto.s3.connection import S3Connection, OrdinaryCallingFormat
|
|
|
|
|
import numpy as np
|
|
|
|
|
import botocore
|
|
|
|
|
from smart_open import smart_open
|
|
|
|
@ -14,6 +17,7 @@ import sys
|
|
|
|
|
|
|
|
|
|
import json
|
|
|
|
|
from io import StringIO
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import json
|
|
|
|
|
|
|
|
|
|
class s3 :
|
|
|
|
@ -29,46 +33,37 @@ class s3 :
|
|
|
|
|
@param filter filename or filtering elements
|
|
|
|
|
"""
|
|
|
|
|
try:
|
|
|
|
|
self.s3 = S3Connection(args['access_key'],args['secret_key'],calling_format=OrdinaryCallingFormat())
|
|
|
|
|
self.bucket = self.s3.get_bucket(args['bucket'].strip(),validate=False) if 'bucket' in args else None
|
|
|
|
|
# self.path = args['path']
|
|
|
|
|
self.filter = args['filter'] if 'filter' in args else None
|
|
|
|
|
self.filename = args['file'] if 'file' in args else None
|
|
|
|
|
self.bucket_name = args['bucket'] if 'bucket' in args else None
|
|
|
|
|
|
|
|
|
|
self._client = boto3.client('s3',aws_access_key_id=args['access_key'],aws_secret_access_key=args['secret_key'],region_name=args['region'])
|
|
|
|
|
self._bucket_name = args['bucket']
|
|
|
|
|
self._file_name = args['file']
|
|
|
|
|
self._region = args['region']
|
|
|
|
|
except Exception as e :
|
|
|
|
|
self.s3 = None
|
|
|
|
|
self.bucket = None
|
|
|
|
|
print (e)
|
|
|
|
|
pass
|
|
|
|
|
def has(self,**_args):
|
|
|
|
|
_found = None
|
|
|
|
|
try:
|
|
|
|
|
if 'file' in _args and 'bucket' in _args:
|
|
|
|
|
_found = self.meta(**_args)
|
|
|
|
|
elif 'bucket' in _args and not 'file' in _args:
|
|
|
|
|
_found = self._client.list_objects(Bucket=_args['bucket'])
|
|
|
|
|
elif 'file' in _args and not 'bucket' in _args :
|
|
|
|
|
_found = self.meta(bucket=self._bucket_name,file = _args['file'])
|
|
|
|
|
except Exception as e:
|
|
|
|
|
_found = None
|
|
|
|
|
pass
|
|
|
|
|
return type(_found) == dict
|
|
|
|
|
def meta(self,**args):
|
|
|
|
|
"""
|
|
|
|
|
This function will return information either about the file in a given bucket
|
|
|
|
|
:name name of the bucket
|
|
|
|
|
"""
|
|
|
|
|
info = self.list(**args)
|
|
|
|
|
[item.open() for item in info]
|
|
|
|
|
return [{"name":item.name,"size":item.size} for item in info]
|
|
|
|
|
def list(self,**args):
|
|
|
|
|
"""
|
|
|
|
|
This function will list the content of a bucket, the bucket must be provided by the name
|
|
|
|
|
:name name of the bucket
|
|
|
|
|
"""
|
|
|
|
|
return list(self.s3.get_bucket(args['name']).list())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def buckets(self):
|
|
|
|
|
#
|
|
|
|
|
# This function will return all buckets, not sure why but it should be used cautiously
|
|
|
|
|
# based on why the s3 infrastructure is used
|
|
|
|
|
#
|
|
|
|
|
return [item.name for item in self.s3.get_all_buckets()]
|
|
|
|
|
|
|
|
|
|
# def buckets(self):
|
|
|
|
|
pass
|
|
|
|
|
# """
|
|
|
|
|
# This function is a wrapper around the bucket list of buckets for s3
|
|
|
|
|
# """
|
|
|
|
|
# return self.s3.get_all_buckets()
|
|
|
|
|
|
|
|
|
|
_bucket = self._bucket_name if 'bucket' not in args else args['bucket']
|
|
|
|
|
_file = self._file_name if 'file' not in args else args['file']
|
|
|
|
|
_data = self._client.get_object(Bucket=_bucket,Key=_file)
|
|
|
|
|
return _data['ResponseMetadata']
|
|
|
|
|
def close(self):
|
|
|
|
|
self._client.close()
|
|
|
|
|
|
|
|
|
|
class Reader(s3) :
|
|
|
|
|
"""
|
|
|
|
@ -77,51 +72,66 @@ class Reader(s3) :
|
|
|
|
|
- stream content if file is Not None
|
|
|
|
|
@TODO: support read from all buckets, think about it
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self,**args) :
|
|
|
|
|
s3.__init__(self,**args)
|
|
|
|
|
def files(self):
|
|
|
|
|
r = []
|
|
|
|
|
try:
|
|
|
|
|
return [item.name for item in self.bucket if item.size > 0]
|
|
|
|
|
except Exception as e:
|
|
|
|
|
pass
|
|
|
|
|
return r
|
|
|
|
|
def stream(self,limit=-1):
|
|
|
|
|
def __init__(self,**_args) :
|
|
|
|
|
super().__init__(**_args)
|
|
|
|
|
|
|
|
|
|
def _stream(self,**_args):
|
|
|
|
|
"""
|
|
|
|
|
At this point we should stream a file from a given bucket
|
|
|
|
|
"""
|
|
|
|
|
key = self.bucket.get_key(self.filename.strip())
|
|
|
|
|
if key is None :
|
|
|
|
|
yield None
|
|
|
|
|
_object = self._client.get_object(Bucket=_args['bucket'],Key=_args['file'])
|
|
|
|
|
_stream = None
|
|
|
|
|
try:
|
|
|
|
|
_stream = _object['Body'].read()
|
|
|
|
|
except Exception as e:
|
|
|
|
|
pass
|
|
|
|
|
if not _stream :
|
|
|
|
|
return None
|
|
|
|
|
if _object['ContentType'] in ['text/csv'] :
|
|
|
|
|
return pd.read_csv(StringIO(str(_stream).replace("\\n","\n").replace("\\r","").replace("\'","")))
|
|
|
|
|
else:
|
|
|
|
|
count = 0
|
|
|
|
|
with smart_open(key) as remote_file:
|
|
|
|
|
for line in remote_file:
|
|
|
|
|
if count == limit and limit > 0 :
|
|
|
|
|
break
|
|
|
|
|
yield line
|
|
|
|
|
count += 1
|
|
|
|
|
return _stream
|
|
|
|
|
|
|
|
|
|
def read(self,**args) :
|
|
|
|
|
if self.filename is None :
|
|
|
|
|
#
|
|
|
|
|
# returning the list of files because no one file was specified.
|
|
|
|
|
return self.files()
|
|
|
|
|
else:
|
|
|
|
|
limit = args['size'] if 'size' in args else -1
|
|
|
|
|
return self.stream(limit)
|
|
|
|
|
|
|
|
|
|
_name = self._file_name if 'file' not in args else args['file']
|
|
|
|
|
_bucket = args['bucket'] if 'bucket' in args else self._bucket_name
|
|
|
|
|
return self._stream(bucket=_bucket,file=_name)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Writer(s3) :
|
|
|
|
|
|
|
|
|
|
def __init__(self,**args) :
|
|
|
|
|
s3.__init__(self,**args)
|
|
|
|
|
def mkdir(self,name):
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
def __init__(self,**_args) :
|
|
|
|
|
super().__init__(**_args)
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
if not self.has(bucket=self._bucket_name) :
|
|
|
|
|
self.make_bucket(self._bucket_name)
|
|
|
|
|
def make_bucket(self,bucket_name):
|
|
|
|
|
"""
|
|
|
|
|
This function will create a folder in a bucket
|
|
|
|
|
This function will create a folder in a bucket,It is best that the bucket is organized as a namespace
|
|
|
|
|
:name name of the folder
|
|
|
|
|
"""
|
|
|
|
|
self.s3.put_object(Bucket=self.bucket_name,key=(name+'/'))
|
|
|
|
|
def write(self,content):
|
|
|
|
|
file = StringIO(content.decode("utf8"))
|
|
|
|
|
self.s3.upload_fileobj(file,self.bucket_name,self.filename)
|
|
|
|
|
|
|
|
|
|
self._client.create_bucket(Bucket=bucket_name,CreateBucketConfiguration={'LocationConstraint': self._region})
|
|
|
|
|
def write(self,_data,**_args):
|
|
|
|
|
"""
|
|
|
|
|
This function will write the data to the s3 bucket, files can be either csv, or json formatted files
|
|
|
|
|
"""
|
|
|
|
|
content = 'text/plain'
|
|
|
|
|
if type(_data) == pd.DataFrame :
|
|
|
|
|
_stream = _data.to_csv(index=False)
|
|
|
|
|
content = 'text/csv'
|
|
|
|
|
elif type(_data) == dict :
|
|
|
|
|
_stream = json.dumps(_data)
|
|
|
|
|
content = 'application/json'
|
|
|
|
|
else:
|
|
|
|
|
_stream = _data
|
|
|
|
|
file = StringIO(_stream)
|
|
|
|
|
bucket = self._bucket_name if 'bucket' not in _args else _args['bucket']
|
|
|
|
|
file_name = self._file_name if 'file' not in _args else _args['file']
|
|
|
|
|
self._client.put_object(Bucket=bucket, Key = file_name, Body=_stream,ContentType=content)
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|