Merge pull request 'aws s3 notebook, brief example' (#22) from v2.2.0 into master
Reviewed-on: #22master
commit
baa8164f16
@ -0,0 +1,131 @@
|
|||||||
|
{
|
||||||
|
"cells": [
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"#### Writing to AWS S3\n",
|
||||||
|
"\n",
|
||||||
|
"We have setup our demo environment with the label **aws** passed to reference our s3 access_key and secret_key and file. In the cell below we will write the data to our aws s3 bucket named **com.phi.demo**"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 3,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
"2.2.1\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"#\n",
|
||||||
|
"# Writing to mongodb database\n",
|
||||||
|
"#\n",
|
||||||
|
"import transport\n",
|
||||||
|
"from transport import providers\n",
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
|
||||||
|
"mgw = transport.get.writer(label='aws',file='friends.csv',bucket='com.phi.demo')\n",
|
||||||
|
"mgw.write(_data)\n",
|
||||||
|
"print (transport.__version__)"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"#### Reading from AWS S3\n",
|
||||||
|
"\n",
|
||||||
|
"The cell below reads the data that has been written by the cell above and computes the average age within a mongodb pipeline. The code in the background executes an aggregation using\n",
|
||||||
|
"\n",
|
||||||
|
"- Basic read of the designated file **friends.csv**\n",
|
||||||
|
"- Compute average age using standard pandas functions\n",
|
||||||
|
"\n",
|
||||||
|
"**NOTE**\n",
|
||||||
|
"\n",
|
||||||
|
"By design **read** object are separated from **write** objects in order to avoid accidental writes to the database.\n",
|
||||||
|
"Read objects are created with **transport.get.reader** whereas write objects are created with **transport.get.writer**"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": 17,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [
|
||||||
|
{
|
||||||
|
"name": "stdout",
|
||||||
|
"output_type": "stream",
|
||||||
|
"text": [
|
||||||
|
" bname age\n",
|
||||||
|
"0 James Bond 55\n",
|
||||||
|
"1 Steve Rogers 150\n",
|
||||||
|
"2 Steve Nyemba 44\n",
|
||||||
|
"--------- STATISTICS ------------\n",
|
||||||
|
"83.0\n"
|
||||||
|
]
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"source": [
|
||||||
|
"\n",
|
||||||
|
"import transport\n",
|
||||||
|
"from transport import providers\n",
|
||||||
|
"import pandas as pd\n",
|
||||||
|
"\n",
|
||||||
|
"def cast(stream) :\n",
|
||||||
|
" print (stream)\n",
|
||||||
|
" return pd.DataFrame(str(stream))\n",
|
||||||
|
"mgr = transport.get.reader(label='aws', bucket='com.phi.demo',file='friends.csv')\n",
|
||||||
|
"_df = mgr.read()\n",
|
||||||
|
"print (_df)\n",
|
||||||
|
"print ('--------- STATISTICS ------------')\n",
|
||||||
|
"print (_df.age.mean())"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "markdown",
|
||||||
|
"metadata": {},
|
||||||
|
"source": [
|
||||||
|
"An **auth-file** is a file that contains database parameters used to access the database. \n",
|
||||||
|
"For code in shared environments, we recommend \n",
|
||||||
|
"\n",
|
||||||
|
"1. Having the **auth-file** stored on disk \n",
|
||||||
|
"2. and the location of the file is set to an environment variable.\n",
|
||||||
|
"\n",
|
||||||
|
"To generate a template of the **auth-file** open the **file generator wizard** found at visit https://healthcareio.the-phi.com/data-transport"
|
||||||
|
]
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"cell_type": "code",
|
||||||
|
"execution_count": null,
|
||||||
|
"metadata": {},
|
||||||
|
"outputs": [],
|
||||||
|
"source": []
|
||||||
|
}
|
||||||
|
],
|
||||||
|
"metadata": {
|
||||||
|
"kernelspec": {
|
||||||
|
"display_name": "Python 3",
|
||||||
|
"language": "python",
|
||||||
|
"name": "python3"
|
||||||
|
},
|
||||||
|
"language_info": {
|
||||||
|
"codemirror_mode": {
|
||||||
|
"name": "ipython",
|
||||||
|
"version": 3
|
||||||
|
},
|
||||||
|
"file_extension": ".py",
|
||||||
|
"mimetype": "text/x-python",
|
||||||
|
"name": "python",
|
||||||
|
"nbconvert_exporter": "python",
|
||||||
|
"pygments_lexer": "ipython3",
|
||||||
|
"version": "3.9.7"
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"nbformat": 4,
|
||||||
|
"nbformat_minor": 2
|
||||||
|
}
|
Loading…
Reference in new issue