Merge pull request 'refactor: etl,better reusability & streamlined and threaded' (#18) from v2.0.4 into master

Reviewed-on: #18
master
Steve L. Nyemba 6 months ago
commit 5ccb073865

@ -44,12 +44,15 @@ import sys
import transport
import time
from multiprocessing import Process
import typer
import os
import transport
from transport import etl
# from transport import providers
import typer
from typing_extensions import Annotated
from typing import Optional
import time
app = typer.Typer()
@ -62,28 +65,33 @@ def wait(jobs):
time.sleep(1)
@app.command(name="apply")
def apply (path,index=None):
def apply (path:Annotated[str,typer.Argument(help="path of the configuration file")],
index:int = typer.Option(help="index of the item of interest, otherwise everything in the file will be processed")):
"""
This function applies data transport from one source to one or several others
:path path of the configuration file
:index index of the _item of interest (otherwise everything will be processed)
"""
_proxy = lambda _object: _object.write(_object.read())
# _proxy = lambda _object: _object.write(_object.read())
if os.path.exists(path):
file = open(path)
_config = json.loads (file.read() )
file.close()
if index :
_config = _config[ int(index)]
etl.instance(**_config)
else:
etl.instance(config=_config)
_config = [_config[ int(index)]]
jobs = []
for _args in _config :
pthread = etl.instance(**_args) #-- automatically starts the process
jobs.append(pthread)
#
# @TODO: Log the number of processes started and estimated time
while jobs :
jobs = [pthread for pthread in jobs if pthread.is_alive()]
time.sleep(1)
#
# @TODO: Log the job termination here ...
@app.command(name="providers")
def supported (format:str="table") :
def supported (format:Annotated[str,typer.Argument(help="format of the output, supported formats are (list,table,json)")]="table") :
"""
This function will print supported providers and their associated classifications
This function will print supported providers/vendors and their associated classifications
"""
_df = (transport.supported())
if format in ['list','json'] :
@ -94,9 +102,15 @@ def supported (format:str="table") :
@app.command()
def version():
print (transport.version.__version__)
"""
This function will display version and license information
"""
print (transport.__app_name__,'version ',transport.__version__)
print (transport.__license__)
@app.command()
def generate (path:str):
def generate (path:Annotated[str,typer.Argument(help="path of the ETL configuration file template (name included)")]):
"""
This function will generate a configuration template to give a sense of how to create one
"""
@ -104,15 +118,12 @@ def generate (path:str):
{
"source":{"provider":"http","url":"https://raw.githubusercontent.com/codeforamerica/ohana-api/master/data/sample-csv/addresses.csv"},
"target":
[{"provider":"file","path":"addresses.csv","delimiter":"csv"},{"provider":"sqlite","database":"sample.db3","table":"addresses"}]
[{"provider":"files","path":"addresses.csv","delimiter":","},{"provider":"sqlite","database":"sample.db3","table":"addresses"}]
}
]
file = open(path,'w')
file.write(json.dumps(_config))
file.close()
@app.command()
def usage():
print (__doc__)
if __name__ == '__main__' :
app()
# #

@ -1,8 +1,8 @@
__app_name__ = 'data-transport'
__author__ = 'The Phi Technology'
__version__= '2.0.2'
__license__="""
__version__= '2.0.4'
__email__ = "info@the-phi.com"
__license__=f"""
Copyright 2010 - 2024, Steve L. Nyemba
Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the Software), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:

@ -15,21 +15,21 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"100%|██████████| 1/1 [00:00<00:00, 5440.08it/s]\n"
"100%|██████████| 1/1 [00:00<00:00, 10106.76it/s]\n"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
"['data transport version ', '2.0.0']\n"
"['data transport version ', '2.0.4']\n"
]
}
],
@ -45,7 +45,7 @@
"PRIVATE_KEY = os.environ['BQ_KEY'] #-- location of the service key\n",
"DATASET = 'demo'\n",
"_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
"bqw = transport.factory.instance(provider=providers.BIGQUERY,dataset=DATASET,table='friends',context='write',private_key=PRIVATE_KEY)\n",
"bqw = transport.get.writer(provider=providers.BIGQUERY,dataset=DATASET,table='friends',private_key=PRIVATE_KEY)\n",
"bqw.write(_data,if_exists='replace') #-- default is append\n",
"print (['data transport version ', transport.__version__])\n"
]
@ -63,7 +63,8 @@
"\n",
"**NOTE**\n",
"\n",
"It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
"By design **read** object are separated from **write** objects in order to avoid accidental writes to the database.\n",
"Read objects are created with **transport.get.reader** whereas write objects are created with **transport.get.writer**"
]
},
{
@ -93,7 +94,7 @@
"from transport import providers\n",
"import os\n",
"PRIVATE_KEY=os.environ['BQ_KEY']\n",
"pgr = transport.instance(provider=providers.BIGQUERY,dataset='demo',table='friends',private_key=PRIVATE_KEY)\n",
"pgr = transport.get.reader(provider=providers.BIGQUERY,dataset='demo',table='friends',private_key=PRIVATE_KEY)\n",
"_df = pgr.read()\n",
"_query = 'SELECT COUNT(*) _counts, AVG(age) from demo.friends'\n",
"_sdf = pgr.read(sql=_query)\n",
@ -106,35 +107,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
"\n",
"**NOTE**:\n",
"An **auth-file** is a file that contains database parameters used to access the database. \n",
"For code in shared environments, we recommend \n",
"\n",
"The auth_file is intended to be **JSON** formatted"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'dataset': 'demo', 'table': 'friends'}"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"1. Having the **auth-file** stored on disk \n",
"2. and the location of the file is set to an environment variable.\n",
"\n",
"{\n",
" \n",
" \"dataset\":\"demo\",\"table\":\"friends\"\n",
"}"
"To generate a template of the **auth-file** open the **file generator wizard** found at visit https://healthcareio.the-phi.com/data-transport"
]
},
{

@ -11,14 +11,14 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2.0.0\n"
"2.0.4\n"
]
}
],
@ -30,7 +30,7 @@
"from transport import providers\n",
"import pandas as pd\n",
"_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
"mgw = transport.factory.instance(provider=providers.MONGODB,db='demo',collection='friends',context='write')\n",
"mgw = transport.get.writer(provider=providers.MONGODB,db='demo',collection='friends')\n",
"mgw.write(_data)\n",
"print (transport.__version__)"
]
@ -48,12 +48,13 @@
"\n",
"**NOTE**\n",
"\n",
"It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
"By design **read** object are separated from **write** objects in order to avoid accidental writes to the database.\n",
"Read objects are created with **transport.get.reader** whereas write objects are created with **transport.get.writer**"
]
},
{
"cell_type": "code",
"execution_count": 4,
"execution_count": 2,
"metadata": {},
"outputs": [
{
@ -73,7 +74,7 @@
"\n",
"import transport\n",
"from transport import providers\n",
"mgr = transport.instance(provider=providers.MONGODB,db='foo',collection='friends')\n",
"mgr = transport.get.reader(provider=providers.MONGODB,db='foo',collection='friends')\n",
"_df = mgr.read()\n",
"PIPELINE = [{\"$group\":{\"_id\":0,\"_counts\":{\"$sum\":1}, \"_mean\":{\"$avg\":\"$age\"}}}]\n",
"_sdf = mgr.read(aggregate='friends',pipeline=PIPELINE)\n",
@ -86,41 +87,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
"An **auth-file** is a file that contains database parameters used to access the database. \n",
"For code in shared environments, we recommend \n",
"\n",
"**NOTE**:\n",
"1. Having the **auth-file** stored on disk \n",
"2. and the location of the file is set to an environment variable.\n",
"\n",
"The auth_file is intended to be **JSON** formatted"
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'host': 'klingon.io',\n",
" 'port': 27017,\n",
" 'username': 'me',\n",
" 'password': 'foobar',\n",
" 'db': 'foo',\n",
" 'collection': 'friends',\n",
" 'authSource': '<authdb>',\n",
" 'mechamism': '<SCRAM-SHA-256|MONGODB-CR|SCRAM-SHA-1>'}"
]
},
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"{\n",
" \"host\":\"klingon.io\",\"port\":27017,\"username\":\"me\",\"password\":\"foobar\",\"db\":\"foo\",\"collection\":\"friends\",\n",
" \"authSource\":\"<authdb>\",\"mechamism\":\"<SCRAM-SHA-256|MONGODB-CR|SCRAM-SHA-1>\"\n",
"}"
"To generate a template of the **auth-file** open the **file generator wizard** found at visit https://healthcareio.the-phi.com/data-transport"
]
},
{

@ -17,17 +17,9 @@
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"['data transport version ', '2.0.0']\n"
]
}
],
"outputs": [],
"source": [
"#\n",
"# Writing to Google Bigquery database\n",
@ -41,7 +33,7 @@
"MSSQL_AUTH_FILE= os.sep.join([AUTH_FOLDER,'mssql.json'])\n",
"\n",
"_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
"msw = transport.factory.instance(provider=providers.MSSQL,table='friends',context='write',auth_file=MSSQL_AUTH_FILE)\n",
"msw = transport.get.writer(provider=providers.MSSQL,table='friends',auth_file=MSSQL_AUTH_FILE)\n",
"msw.write(_data,if_exists='replace') #-- default is append\n",
"print (['data transport version ', transport.__version__])\n"
]
@ -59,30 +51,15 @@
"\n",
"**NOTE**\n",
"\n",
"It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
"By design **read** object are separated from **write** objects in order to avoid accidental writes to the database.\n",
"Read objects are created with **transport.get.reader** whereas write objects are created with **transport.get.writer**"
]
},
{
"cell_type": "code",
"execution_count": 5,
"execution_count": null,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
" name age\n",
"0 James Bond 55\n",
"1 Steve Rogers 150\n",
"2 Steve Nyemba 44\n",
"\n",
"--------- STATISTICS ------------\n",
"\n",
" _counts \n",
"0 3 83\n"
]
}
],
"outputs": [],
"source": [
"\n",
"import transport\n",
@ -91,7 +68,7 @@
"AUTH_FOLDER = os.environ['DT_AUTH_FOLDER'] #-- location of the service key\n",
"MSSQL_AUTH_FILE= os.sep.join([AUTH_FOLDER,'mssql.json'])\n",
"\n",
"msr = transport.instance(provider=providers.MSSQL,table='friends',auth_file=MSSQL_AUTH_FILE)\n",
"msr = transport.get.reader(provider=providers.MSSQL,table='friends',auth_file=MSSQL_AUTH_FILE)\n",
"_df = msr.read()\n",
"_query = 'SELECT COUNT(*) _counts, AVG(age) from friends'\n",
"_sdf = msr.read(sql=_query)\n",
@ -104,25 +81,31 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
"An **auth-file** is a file that contains database parameters used to access the database. \n",
"For code in shared environments, we recommend \n",
"\n",
"**NOTE**:\n",
"1. Having the **auth-file** stored on disk \n",
"2. and the location of the file is set to an environment variable.\n",
"\n",
"The auth_file is intended to be **JSON** formatted"
"To generate a template of the **auth-file** open the **file generator wizard** found at visit https://healthcareio.the-phi.com/data-transport"
]
},
{
"cell_type": "code",
"execution_count": 3,
"execution_count": 1,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"{'dataset': 'demo', 'table': 'friends'}"
"{'provider': 'sqlserver',\n",
" 'dataset': 'demo',\n",
" 'table': 'friends',\n",
" 'username': '<username>',\n",
" 'password': '<password>'}"
]
},
"execution_count": 3,
"execution_count": 1,
"metadata": {},
"output_type": "execute_result"
}
@ -130,10 +113,17 @@
"source": [
"\n",
"{\n",
" \n",
" \"provider\":\"sqlserver\",\n",
" \"dataset\":\"demo\",\"table\":\"friends\",\"username\":\"<username>\",\"password\":\"<password>\"\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {

@ -14,14 +14,14 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2.0.0\n"
"2.0.4\n"
]
}
],
@ -33,7 +33,7 @@
"from transport import providers\n",
"import pandas as pd\n",
"_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
"myw = transport.factory.instance(provider=providers.MYSQL,database='demo',table='friends',context='write',auth_file=\"/home/steve/auth-mysql.json\")\n",
"myw = transport.get.writer(provider=providers.MYSQL,database='demo',table='friends',auth_file=\"/home/steve/auth-mysql.json\")\n",
"myw.write(_data,if_exists='replace') #-- default is append\n",
"print (transport.__version__)"
]
@ -51,12 +51,13 @@
"\n",
"**NOTE**\n",
"\n",
"It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
"By design **read** object are separated from **write** objects in order to avoid accidental writes to the database.\n",
"Read objects are created with **transport.get.reader** whereas write objects are created with **transport.get.writer**"
]
},
{
"cell_type": "code",
"execution_count": 9,
"execution_count": 4,
"metadata": {},
"outputs": [
{
@ -68,7 +69,7 @@
"1 Steve Rogers 150\n",
"2 Steve Nyemba 44\n",
"--------- STATISTICS ------------\n",
" _counts avg\n",
" _counts AVG(age)\n",
"0 3 83.0\n"
]
}
@ -77,7 +78,7 @@
"\n",
"import transport\n",
"from transport import providers\n",
"myr = transport.instance(provider=providers.POSTGRESQL,database='demo',table='friends',auth_file='/home/steve/auth-mysql.json')\n",
"myr = transport.get.reader(provider=providers.MYSQL,database='demo',table='friends',auth_file='/home/steve/auth-mysql.json')\n",
"_df = myr.read()\n",
"_query = 'SELECT COUNT(*) _counts, AVG(age) from friends'\n",
"_sdf = myr.read(sql=_query)\n",
@ -90,16 +91,18 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
"An **auth-file** is a file that contains database parameters used to access the database. \n",
"For code in shared environments, we recommend \n",
"\n",
"**NOTE**:\n",
"1. Having the **auth-file** stored on disk \n",
"2. and the location of the file is set to an environment variable.\n",
"\n",
"The auth_file is intended to be **JSON** formatted"
"To generate a template of the **auth-file** open the **file generator wizard** found at visit https://healthcareio.the-phi.com/data-transport"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 5,
"metadata": {},
"outputs": [
{
@ -109,21 +112,29 @@
" 'port': 3306,\n",
" 'username': 'me',\n",
" 'password': 'foobar',\n",
" 'provider': 'mysql',\n",
" 'database': 'demo',\n",
" 'table': 'friends'}"
]
},
"execution_count": 1,
"execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"{\n",
" \"host\":\"klingon.io\",\"port\":3306,\"username\":\"me\",\"password\":\"foobar\",\n",
" \"host\":\"klingon.io\",\"port\":3306,\"username\":\"me\",\"password\":\"foobar\", \"provider\":\"mysql\",\n",
" \"database\":\"demo\",\"table\":\"friends\"\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {

@ -14,14 +14,14 @@
},
{
"cell_type": "code",
"execution_count": 8,
"execution_count": 1,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2.0.0\n"
"2.0.4\n"
]
}
],
@ -33,7 +33,7 @@
"from transport import providers\n",
"import pandas as pd\n",
"_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
"pgw = transport.factory.instance(provider=providers.POSTGRESQL,database='demo',table='friends',context='write')\n",
"pgw = transport.get.writer(provider=providers.POSTGRESQL,database='demo',table='friends')\n",
"pgw.write(_data,if_exists='replace') #-- default is append\n",
"print (transport.__version__)"
]
@ -49,14 +49,16 @@
"- Basic read of the designated table (friends) created above\n",
"- Execute an aggregate SQL against the table\n",
"\n",
"\n",
"**NOTE**\n",
"\n",
"It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
"By design **read** object are separated from **write** objects in order to avoid accidental writes to the database.\n",
"Read objects are created with **transport.get.reader** whereas write objects are created with **transport.get.writer**"
]
},
{
"cell_type": "code",
"execution_count": 6,
"execution_count": 2,
"metadata": {},
"outputs": [
{
@ -77,7 +79,7 @@
"\n",
"import transport\n",
"from transport import providers\n",
"pgr = transport.instance(provider=providers.POSTGRESQL,database='demo',table='friends')\n",
"pgr = transport.get.reader(provider=providers.POSTGRESQL,database='demo',table='friends')\n",
"_df = pgr.read()\n",
"_query = 'SELECT COUNT(*) _counts, AVG(age) from friends'\n",
"_sdf = pgr.read(sql=_query)\n",
@ -90,16 +92,18 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
"An **auth-file** is a file that contains database parameters used to access the database. \n",
"For code in shared environments, we recommend \n",
"\n",
"**NOTE**:\n",
"1. Having the **auth-file** stored on disk \n",
"2. and the location of the file is set to an environment variable.\n",
"\n",
"The auth_file is intended to be **JSON** formatted"
"To generate a template of the **auth-file** open the **file generator wizard** found at visit https://healthcareio.the-phi.com/data-transport"
]
},
{
"cell_type": "code",
"execution_count": 1,
"execution_count": 4,
"metadata": {},
"outputs": [
{
@ -109,18 +113,19 @@
" 'port': 5432,\n",
" 'username': 'me',\n",
" 'password': 'foobar',\n",
" 'provider': 'postgresql',\n",
" 'database': 'demo',\n",
" 'table': 'friends'}"
]
},
"execution_count": 1,
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"{\n",
" \"host\":\"klingon.io\",\"port\":5432,\"username\":\"me\",\"password\":\"foobar\",\n",
" \"host\":\"klingon.io\",\"port\":5432,\"username\":\"me\",\"password\":\"foobar\", \"provider\":\"postgresql\",\n",
" \"database\":\"demo\",\"table\":\"friends\"\n",
"}"
]

@ -18,7 +18,7 @@
"name": "stdout",
"output_type": "stream",
"text": [
"2.0.0\n"
"2.0.4\n"
]
}
],
@ -30,7 +30,7 @@
"from transport import providers\n",
"import pandas as pd\n",
"_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
"sqw = transport.factory.instance(provider=providers.SQLITE,database='/home/steve/demo.db3',table='friends',context='write')\n",
"sqw = transport.get.writer(provider=providers.SQLITE,database='/home/steve/demo.db3',table='friends')\n",
"sqw.write(_data,if_exists='replace') #-- default is append\n",
"print (transport.__version__)"
]
@ -46,9 +46,11 @@
"- Basic read of the designated table (friends) created above\n",
"- Execute an aggregate SQL against the table\n",
"\n",
"\n",
"**NOTE**\n",
"\n",
"It is possible to use **transport.factory.instance** or **transport.instance** they are the same. It allows the maintainers to know that we used a factory design pattern."
"By design **read** object are separated from **write** objects in order to avoid accidental writes to the database.\n",
"Read objects are created with **transport.get.reader** whereas write objects are created with **transport.get.writer**"
]
},
{
@ -74,10 +76,10 @@
"\n",
"import transport\n",
"from transport import providers\n",
"pgr = transport.instance(provider=providers.SQLITE,database='/home/steve/demo.db3',table='friends')\n",
"_df = pgr.read()\n",
"sqr = transport.get.reader(provider=providers.SQLITE,database='/home/steve/demo.db3',table='friends')\n",
"_df = sqr.read()\n",
"_query = 'SELECT COUNT(*) _counts, AVG(age) from friends'\n",
"_sdf = pgr.read(sql=_query)\n",
"_sdf = sqr.read(sql=_query)\n",
"print (_df)\n",
"print ('--------- STATISTICS ------------')\n",
"print (_sdf)"
@ -87,11 +89,13 @@
"cell_type": "markdown",
"metadata": {},
"source": [
"The cell bellow show the content of an auth_file, in this case if the dataset/table in question is not to be shared then you can use auth_file with information associated with the parameters.\n",
"An **auth-file** is a file that contains database parameters used to access the database. \n",
"For code in shared environments, we recommend \n",
"\n",
"**NOTE**:\n",
"1. Having the **auth-file** stored on disk \n",
"2. and the location of the file is set to an environment variable.\n",
"\n",
"The auth_file is intended to be **JSON** formatted. This is an overkill for SQLite ;-)"
"To generate a template of the **auth-file** open the **file generator wizard** found at visit https://healthcareio.the-phi.com/data-transport"
]
},
{

@ -5,19 +5,16 @@ from setuptools import setup, find_packages
import os
import sys
# from version import __version__,__author__
from info import __version__, __author__
from info import __version__, __author__,__app_name__,__license__
# __author__ = 'The Phi Technology'
# __version__= '1.8.0'
def read(fname):
return open(os.path.join(os.path.dirname(__file__), fname)).read()
args = {
"name":"data-transport",
"name":__app_name__,
"version":__version__,
"author":__author__,"author_email":"info@the-phi.com",
"license":"MIT",
"license":__license__,
# "packages":["transport","info","transport/sql"]},
"packages": find_packages(include=['info','transport', 'transport.*'])}

@ -22,8 +22,8 @@ from transport import sql, nosql, cloud, other
import pandas as pd
import json
import os
from info import __version__,__author__
from transport.iowrapper import IWriter, IReader
from info import __version__,__author__,__email__,__license__,__app_name__
from transport.iowrapper import IWriter, IReader, IETL
from transport.plugins import PluginLoader
from transport import providers
@ -32,26 +32,35 @@ def init():
global PROVIDERS
for _module in [cloud,sql,nosql,other] :
for _provider_name in dir(_module) :
if _provider_name.startswith('__') :
if _provider_name.startswith('__') or _provider_name == 'common':
continue
PROVIDERS[_provider_name] = {'module':getattr(_module,_provider_name),'type':_module.__name__}
def instance (**_args):
"""
type:
read: true|false (default true)
auth_file
This function returns an object of to read or write from a supported database provider/vendor
@provider provider
@context read/write (default is read)
@auth_file: Optional if the database information provided is in a file. Useful for not sharing passwords
kwargs These are arguments that are provider/vendor specific
"""
global PROVIDERS
if 'auth_file' in _args:
if os.path.exists(_args['auth_file']) :
#
# @TODO: add encryption module and decryption to enable this to be secure
#
f = open(_args['auth_file'])
_args = dict (_args,** json.loads(f.read()) )
#_args = dict (_args,** json.loads(f.read()) )
#
# we overrite file parameters with arguments passed
_args = dict (json.loads(f.read()),**_args )
f.close()
else:
filename = _args['auth_file']
raise Exception(f" {filename} was not found or is invalid")
if _args['provider'] in PROVIDERS :
if 'provider' in _args and _args['provider'] in PROVIDERS :
_info = PROVIDERS[_args['provider']]
_module = _info['module']
if 'context' in _args :
@ -62,22 +71,54 @@ def instance (**_args):
_agent = _pointer (**_args)
#
loader = None
if 'plugins' in _args :
_params = _args['plugins']
if 'path' in _params and 'names' in _params :
loader = PluginLoader(**_params)
elif type(_params) == list:
loader = PluginLoader()
for _delegate in _params :
loader.set(_delegate)
#
# @TODO:
# define a logger object here that will used by the wrapper
# this would allow us to know what the data-transport is doing and where/how it fails
#
# if 'plugins' in _args :
# _params = _args['plugins']
# if 'path' in _params and 'names' in _params :
# loader = PluginLoader(**_params)
# elif type(_params) == list:
# loader = PluginLoader()
# for _delegate in _params :
# loader.set(_delegate)
loader = None if 'plugins' not in _args else _args['plugins']
return IReader(_agent,loader) if _context == 'read' else IWriter(_agent,loader)
else:
#
# We can handle the case for an ETL object
#
raise Exception ("Missing or Unknown provider")
pass
class get :
"""
This class is just a wrapper to make the interface (API) more conversational and easy to understand
"""
@staticmethod
def reader (**_args):
_args['context'] = 'read'
return instance(**_args)
@staticmethod
def writer(**_args):
"""
This function is a wrapper that will return a writer to a database. It disambiguates the interface
"""
_args['context'] = 'write'
return instance(**_args)
@staticmethod
def etl (**_args):
if 'source' in _args and 'target' in _args :
return IETL(**_args)
else:
raise Exception ("Malformed input found, object must have both 'source' and 'target' attributes")
def supported ():
_info = {}
for _provider in PROVIDERS :

@ -39,22 +39,22 @@ import os
from multiprocessing import Process
SYS_ARGS = {}
if len(sys.argv) > 1:
N = len(sys.argv)
for i in range(1,N):
value = None
if sys.argv[i].startswith('--'):
key = sys.argv[i][2:] #.replace('-','')
SYS_ARGS[key] = 1
if i + 1 < N:
value = sys.argv[i + 1] = sys.argv[i+1].strip()
if key and value and not value.startswith('--'):
SYS_ARGS[key] = value
i += 2
# SYS_ARGS = {}
# if len(sys.argv) > 1:
# N = len(sys.argv)
# for i in range(1,N):
# value = None
# if sys.argv[i].startswith('--'):
# key = sys.argv[i][2:] #.replace('-','')
# SYS_ARGS[key] = 1
# if i + 1 < N:
# value = sys.argv[i + 1] = sys.argv[i+1].strip()
# if key and value and not value.startswith('--'):
# SYS_ARGS[key] = value
# i += 2
class Transporter(Process):
"""
The transporter (Jason Stathem) moves data from one persistant store to another
@ -74,81 +74,72 @@ class Transporter(Process):
#
# Let's insure we can support multiple targets
self._target = [self._target] if type(self._target) != list else self._target
pass
def read(self,**_args):
"""
This function
"""
_reader = transport.factory.instance(**self._source)
def run(self):
_reader = transport.get.etl(source=self._source,target=self._target)
#
# If arguments are provided then a query is to be executed (not just a table dump)
if 'cmd' in self._source or 'query' in self._source :
_query = self._source['cmd'] if 'cmd' in self._source else self._source['query']
return _reader.read(**_query)
else:
return _reader.read()
# return _reader.read() if 'query' not in self._source else _reader.read(**self._source['query'])
def _delegate_write(self,_data,**_args):
"""
This function will write a data-frame to a designated data-store, The function is built around a delegation design pattern
:data data-frame or object to be written
"""
if _data.shape[0] > 0 :
for _target in self._target :
if 'write' not in _target :
_target['context'] = 'write'
# _target['lock'] = True
else:
# _target['write']['lock'] = True
pass
_writer = transport.factory.instance(**_target)
_writer.write(_data,**_args)
if hasattr(_writer,'close') :
_writer.close()
def write(self,_df,**_args):
"""
"""
SEGMENT_COUNT = 6
MAX_ROWS = 1000000
# _df = self.read()
_segments = np.array_split(np.arange(_df.shape[0]),SEGMENT_COUNT) if _df.shape[0] > MAX_ROWS else np.array( [np.arange(_df.shape[0])])
# _index = 0
for _indexes in _segments :
_fwd_args = {} if not _args else _args
self._delegate_write(_df.iloc[_indexes],**_fwd_args)
time.sleep(1)
#
# @TODO: Perhaps consider writing up each segment in a thread/process (speeds things up?)
pass
# def _read(self,**_args):
# """
# This function
# """
# _reader = transport.factory.instance(**self._source)
# #
# # If arguments are provided then a query is to be executed (not just a table dump)
# if 'cmd' in self._source or 'query' in self._source :
# _query = self._source['cmd'] if 'cmd' in self._source else self._source['query']
# return _reader.read(**_query)
# else:
# return _reader.read()
# # return _reader.read() if 'query' not in self._source else _reader.read(**self._source['query'])
# def _delegate_write(self,_data,**_args):
# """
# This function will write a data-frame to a designated data-store, The function is built around a delegation design pattern
# :data data-frame or object to be written
# """
# if _data.shape[0] > 0 :
# for _target in self._target :
# if 'write' not in _target :
# _target['context'] = 'write'
# # _target['lock'] = True
# else:
# # _target['write']['lock'] = True
# pass
# _writer = transport.factory.instance(**_target)
# _writer.write(_data,**_args)
# if hasattr(_writer,'close') :
# _writer.close()
# def write(self,_df,**_args):
# """
# """
# SEGMENT_COUNT = 6
# MAX_ROWS = 1000000
# # _df = self.read()
# _segments = np.array_split(np.arange(_df.shape[0]),SEGMENT_COUNT) if _df.shape[0] > MAX_ROWS else np.array( [np.arange(_df.shape[0])])
# # _index = 0
# for _indexes in _segments :
# _fwd_args = {} if not _args else _args
# self._delegate_write(_df.iloc[_indexes],**_fwd_args)
# time.sleep(1)
# #
# # @TODO: Perhaps consider writing up each segment in a thread/process (speeds things up?)
# pass
def instance(**_args):
_proxy = lambda _agent: _agent.write(_agent.read())
if 'source' in _args and 'target' in _args :
_agent = Transporter(**_args)
_proxy(_agent)
else:
_config = _args['config']
_items = [Transporter(**_item) for _item in _config ]
_MAX_JOBS = 5
_items = np.array_split(_items,_MAX_JOBS)
for _batch in _items :
jobs = []
for _item in _batch :
thread = Process(target=_proxy,args = (_item,))
thread.start()
jobs.append(thread)
while jobs :
jobs = [thread for thread in jobs if thread.is_alive()]
time.sleep(1)
pthread = Transporter (**_args)
pthread.start()
return pthread
pass
# class Post(Process):
# def __init__(self,**args):

@ -1,14 +1,39 @@
"""
This class is a wrapper around read/write classes of cloud,sql,nosql,other packages
The wrapper allows for application of plugins as pre-post conditions
The wrapper allows for application of plugins as pre-post conditions.
NOTE: Plugins are converted to a pipeline, so we apply a pipeline when reading or writing:
- upon initialization we will load plugins
- on read/write we apply a pipeline (if passed as an argument)
"""
from transport.plugins import plugin, PluginLoader
import transport
from transport import providers
from multiprocessing import Process
import time
class IO:
"""
Base wrapper class for read/write
Base wrapper class for read/write and support for logs
"""
def __init__(self,_agent,plugins):
self._agent = _agent
self._plugins = plugins
if plugins :
self._init_plugins(plugins)
else:
self._plugins = None
def _init_plugins(self,_args):
"""
This function will load pipelined functions as a plugin loader
"""
if 'path' in _args and 'names' in _args :
self._plugins = PluginLoader(**_args)
else:
self._plugins = PluginLoader()
[self._plugins.set(_pointer) for _pointer in _args]
#
# @TODO: We should have a way to log what plugins are loaded and ready to use
def meta (self,**_args):
if hasattr(self._agent,'meta') :
return self._agent.meta(**_args)
@ -28,9 +53,14 @@ class IO:
return self._agent.apply(_query)
return None
class IReader(IO):
"""
This is a wrapper for read functionalities
"""
def __init__(self,_agent,pipeline=None):
super().__init__(_agent,pipeline)
def read(self,**_args):
if 'plugins' in _args :
self._init_plugins(_args['plugins'])
_data = self._agent.read(**_args)
if self._plugins and self._plugins.ratio() > 0 :
_data = self._plugins.apply(_data)
@ -41,7 +71,43 @@ class IWriter(IO):
def __init__(self,_agent,pipeline=None):
super().__init__(_agent,pipeline)
def write(self,_data,**_args):
if 'plugins' in _args :
self._init_plugins(_args['plugins'])
if self._plugins and self._plugins.ratio() > 0 :
_data = self._plugins.apply(_data)
self._agent.write(_data,**_args)
#
# The ETL object in its simplest form is an aggregation of read/write objects
# @TODO: ETL can/should aggregate a writer as a plugin and apply it as a process
class IETL(IReader) :
"""
This class performs an ETL operation by ineriting a read and adding writes as pipeline functions
"""
def __init__(self,**_args):
super().__init__(transport.get.reader(**_args['source']))
if 'target' in _args:
self._targets = _args['target'] if type(_args['target']) == list else [_args['target']]
else:
self._targets = []
self.jobs = []
#
# If the parent is already multiprocessing
self._hasParentProcess = False if 'hasParentProcess' not in _args else _args['hasParentProcess']
def read(self,**_args):
_data = super().read(**_args)
for _kwargs in self._targets :
self.post(_data,**_kwargs)
return _data
def post (self,_data,**_args) :
"""
This function returns an instance of a process that will perform the write operation
:_args parameters associated with writer object
"""
writer = transport.get.writer(**_args)
writer.write(_data)
writer.close()

@ -53,8 +53,8 @@ class Writer (File):
"""
try:
_delim = self._delimiter if 'delimiter' not in _args else _args['delimiter']
_path = self._path if 'path' not in _args else _args['path']
_delim = self.delimiter if 'delimiter' not in _args else _args['delimiter']
_path = self.path if 'path' not in _args else _args['path']
_mode = self._mode if 'mode' not in _args else _args['mode']
info.to_csv(_path,index=False,sep=_delim)
@ -62,6 +62,7 @@ class Writer (File):
except Exception as e:
#
# Not sure what should be done here ...
print (e)
pass
finally:
# DiskWriter.THREAD_LOCK.release()

@ -25,9 +25,9 @@ class plugin :
self._name = _args['name']
self._about = _args['about']
self._mode = _args['mode'] if 'mode' in _args else 'rw'
def __call__(self,pointer):
def wrapper(_args):
return pointer(_args)
def __call__(self,pointer,**kwargs):
def wrapper(_args,**kwargs):
return pointer(_args,**kwargs)
#
# @TODO:
# add attributes to the wrapper object
@ -55,6 +55,7 @@ class PluginLoader :
self._names = []
if path and os.path.exists(path) and _names:
for _name in self._names :
spec = importlib.util.spec_from_file_location('private', path)
module = importlib.util.module_from_spec(spec)
spec.loader.exec_module(module) #--loads it into sys.modules
@ -101,7 +102,7 @@ class PluginLoader :
return _name in self._modules
def ratio (self):
"""
how many modules loaded vs unloaded given the list of names
This functiion determines how many modules loaded vs unloaded given the list of names
"""
_n = len(self._names)

Loading…
Cancel
Save