You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
privacykit/notebooks/Untitled.ipynb

239 lines
7.7 KiB
Plaintext

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import itertools \n",
"import pandas as pd\n",
"import numpy as np\n",
"# from pandas_risk import *\n",
"from time import time\n",
"import os\n",
"\n",
"attr = ['gender','race','zip','year_of_birth']\n",
"comb_attr = [\n",
" ['zip' ,'gender', 'birth_datetime', 'race'], \n",
" ['zip', 'gender', 'year_of_birth', 'race'], \n",
" ['gender','race','zip'],\n",
" ['race','year_of_birth','zip']\n",
"]\n",
" "
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"SQL_CONTROLLED=\"SELECT * FROM deid_risk.basic_risk60k\"\n",
"dfc = pd.read_gbq(SQL_CONTROLLED,private_key='/home/steve/dev/google-cloud-sdk/accounts/curation-test.json')\n"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def risk(**args):\n",
" Yi = args['data']\n",
" Yi = Yi.fillna(' ')\n",
" sizes = args['prop'] if 'prop' in args else np.arange(5,100,5)\n",
" FLAG = args['flag'] if 'flag' in args else 'UNFLAGGED'\n",
" N = args['num_runs']\n",
" if 'cols' in args :\n",
" columns = args['cols']\n",
" else:\n",
" columns = list(set(Yi.columns.tolist()) - set(['person_id']))\n",
" p = pd.DataFrame()\n",
" y_i= pd.DataFrame({\"group_size\":Yi.groupby(columns,as_index=False).size()}).reset_index()\n",
" for index in sizes :\n",
" for n in np.repeat(index,N):\n",
" \n",
" # we will randomly sample n% rows from the dataset\n",
" i = np.random.choice(Yi.shape[0],((Yi.shape[0] * n)/100),replace=False)\n",
" x_i= pd.DataFrame(Yi).loc[i] \n",
" risk = x_i.deid.risk(id='person_id',quasi_id = columns)\n",
" x_i = pd.DataFrame({\"group_size\":x_i.groupby(columns,as_index=False).size()}).reset_index()\n",
"\n",
"\n",
" r = pd.merge(x_i,y_i,on=columns,how='inner')\n",
" if r.shape[0] == 0 :\n",
" continue\n",
" r['marketer'] = r.apply(lambda row: (row.group_size_x / np.float64(row.group_size_y)) /np.sum(x_i.group_size) ,axis=1)\n",
" r['sample %'] = np.repeat(n,r.shape[0])\n",
" r['tier'] = np.repeat(FLAG,r.shape[0])\n",
" r['sample marketer'] = np.repeat(risk['marketer'].values[0],r.shape[0])\n",
" # r['patient_count'] = np.repeat(r.shape[0],r.shape[0])\n",
" r = r.groupby(['sample %','tier','sample marketer'],as_index=False).sum()[['sample %','marketer','sample marketer','tier']]\n",
" p = p.append(r)\n",
" p.index = np.arange(p.shape[0]).astype(np.int64)\n",
" return p\n",
" \n",
" "
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"from pandas_risk import *\n",
"o = pd.DataFrame()\n",
"PATH=\"out/experiment-phase-2.xlsx\"\n",
"writer = pd.ExcelWriter(PATH,engine='xlsxwriter')\n",
"comb_attr = [\n",
" ['zip' ,'gender', 'birth_datetime', 'race'], \n",
" ['zip', 'gender', 'year_of_birth', 'race'], \n",
" ['gender','race','zip'],\n",
" ['race','year_of_birth','zip']\n",
"]\n",
"\n",
"for cols in comb_attr :\n",
" o = risk(data=dfc,cols=cols,flag='CONTROLLED',num_runs=5)\n",
" #\n",
" # adding the policy\n",
" x = [1* dfc.columns.isin(cols) for i in range(o.shape[0])]\n",
" o = o.join(pd.DataFrame(x,columns = dfc.columns))\n",
" #\n",
" # Write this to excel notebook\n",
" o.to_excel(writer,\"-\".join(cols))\n",
"# break\n",
" \n",
"\n",
"# p = p.rename(columns={'marketer_x':'sample marketer'})\n",
"# p.index = np.arange(p.shape[0]).astype(np.int64)\n",
"\n",
"writer.save()"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"<div>\n",
"<style scoped>\n",
" .dataframe tbody tr th:only-of-type {\n",
" vertical-align: middle;\n",
" }\n",
"\n",
" .dataframe tbody tr th {\n",
" vertical-align: top;\n",
" }\n",
"\n",
" .dataframe thead th {\n",
" text-align: right;\n",
" }\n",
"</style>\n",
"<table border=\"1\" class=\"dataframe\">\n",
" <thead>\n",
" <tr style=\"text-align: right;\">\n",
" <th></th>\n",
" <th>person_id</th>\n",
" <th>year_of_birth</th>\n",
" <th>month_of_birth</th>\n",
" <th>day_of_birth</th>\n",
" <th>birth_datetime</th>\n",
" <th>race_concept_id</th>\n",
" <th>ethnicity_concept_id</th>\n",
" <th>location_id</th>\n",
" <th>care_site_id</th>\n",
" <th>person_source_value</th>\n",
" <th>...</th>\n",
" <th>gender_source_concept_id</th>\n",
" <th>race_source_value</th>\n",
" <th>ethnicity_source_value</th>\n",
" <th>sex_at_birth</th>\n",
" <th>birth_date</th>\n",
" <th>race</th>\n",
" <th>zip</th>\n",
" <th>city</th>\n",
" <th>state</th>\n",
" <th>gender</th>\n",
" </tr>\n",
" </thead>\n",
" <tbody>\n",
" </tbody>\n",
"</table>\n",
"<p>0 rows × 21 columns</p>\n",
"</div>"
],
"text/plain": [
"Empty DataFrame\n",
"Columns: [person_id, year_of_birth, month_of_birth, day_of_birth, birth_datetime, race_concept_id, ethnicity_concept_id, location_id, care_site_id, person_source_value, gender_source_value, gender_source_concept_id, race_source_value, ethnicity_source_value, sex_at_birth, birth_date, race, zip, city, state, gender]\n",
"Index: []\n",
"\n",
"[0 rows x 21 columns]"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"x = [1* dfc.columns.isin(cols) for i in range(o.shape[0])]\n",
"o.join(pd.DataFrame(x,columns = dfc.columns))\n"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'columns' is not defined",
"output_type": "error",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-6-8e7b9895361f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mcolumns\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'columns' is not defined"
]
}
],
"source": [
"columns\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 2",
"language": "python",
"name": "python2"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 2
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython2",
"version": "2.7.15rc1"
}
},
"nbformat": 4,
"nbformat_minor": 2
}