|
|
|
@ -35,25 +35,32 @@ class deid :
|
|
|
|
|
"""
|
|
|
|
|
@param id name of patient field
|
|
|
|
|
@params num_runs number of runs (default will be 100)
|
|
|
|
|
@params quasi_id list of quasi identifiers to be used (this will only perform a single run)
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
id = args['id']
|
|
|
|
|
|
|
|
|
|
num_runs = args['num_runs'] if 'num_runs' in args else 100
|
|
|
|
|
if 'quasi_id' in args :
|
|
|
|
|
num_runs = 1
|
|
|
|
|
columns = list(set(args['quasi_id'])- set(id) )
|
|
|
|
|
else :
|
|
|
|
|
num_runs = args['num_runs'] if 'num_runs' in args else 100
|
|
|
|
|
columns = list(set(self._df.columns) - set([id]))
|
|
|
|
|
r = pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
columns = list(set(self._df.columns) - set([id]))
|
|
|
|
|
k = len(columns)
|
|
|
|
|
for i in range(0,num_runs) :
|
|
|
|
|
#
|
|
|
|
|
# let's chose a random number of columns and compute marketer and prosecutor risk
|
|
|
|
|
# Once the fields are selected we run a groupby clause
|
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
n = np.random.randint(2,k) #-- number of random fields we are picking
|
|
|
|
|
ii = np.random.choice(k,n,replace=False)
|
|
|
|
|
cols = np.array(columns)[ii].tolist()
|
|
|
|
|
x_ = self._df.groupby(cols).count()[id].values
|
|
|
|
|
if 'quasi_id' not in args :
|
|
|
|
|
n = np.random.randint(2,k) #-- number of random fields we are picking
|
|
|
|
|
ii = np.random.choice(k,n,replace=False)
|
|
|
|
|
cols = np.array(columns)[ii].tolist()
|
|
|
|
|
else:
|
|
|
|
|
cols = columns
|
|
|
|
|
n = len(cols)
|
|
|
|
|
x_ = self._df.groupby(cols).count()[id].values
|
|
|
|
|
r = r.append(
|
|
|
|
|
pd.DataFrame(
|
|
|
|
|
[
|
|
|
|
@ -72,20 +79,22 @@ class deid :
|
|
|
|
|
return r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# import pandas as pd
|
|
|
|
|
# import numpy as np
|
|
|
|
|
# from io import StringIO
|
|
|
|
|
# csv = """
|
|
|
|
|
# id,sex,age,profession,drug_test
|
|
|
|
|
# 1,M,37,doctor,-
|
|
|
|
|
# 2,F,28,doctor,+
|
|
|
|
|
# 3,M,37,doctor,-
|
|
|
|
|
# 4,M,28,doctor,+
|
|
|
|
|
# 5,M,28,doctor,-
|
|
|
|
|
# 6,M,37,doctor,-
|
|
|
|
|
# """
|
|
|
|
|
# f = StringIO()
|
|
|
|
|
# f.write(unicode(csv))
|
|
|
|
|
# f.seek(0)
|
|
|
|
|
# df = pd.read_csv(f)
|
|
|
|
|
# print df.deid.risk(id='id',num_runs=2)
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import numpy as np
|
|
|
|
|
from io import StringIO
|
|
|
|
|
csv = """
|
|
|
|
|
id,sex,age,profession,drug_test
|
|
|
|
|
1,M,37,doctor,-
|
|
|
|
|
2,F,28,doctor,+
|
|
|
|
|
3,M,37,doctor,-
|
|
|
|
|
4,M,28,doctor,+
|
|
|
|
|
5,M,28,doctor,-
|
|
|
|
|
6,M,37,doctor,-
|
|
|
|
|
"""
|
|
|
|
|
f = StringIO()
|
|
|
|
|
f.write(unicode(csv))
|
|
|
|
|
f.seek(0)
|
|
|
|
|
df = pd.read_csv(f)
|
|
|
|
|
print df.deid.risk(id='id',num_runs=2)
|
|
|
|
|
print " *** "
|
|
|
|
|
print df.deid.risk(id='id',quasi_id=['sex','age','profession'])
|
|
|
|
|