| 
						
						
							
								
							
						
						
					 | 
				
				 | 
				 | 
				
					@ -41,7 +41,7 @@ The framework will depend on pandas and numpy (for now). Below is a basic sample
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    import pandas as pd
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    from pandas_risk import *
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    mydf = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),50),"y":np.random.choice( np.random.randint(1,10),50) })
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    mydf = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),50),"y":np.random.choice( np.random.randint(1,10),50),"z":np.random.choice( np.random.randint(1,10),50),"r":np.random.choice( np.random.randint(1,10),50)  })
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    print mydf.risk.evaluate()
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				 | 
				
					@ -51,7 +51,7 @@ The framework will depend on pandas and numpy (for now). Below is a basic sample
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    #   - Insure the population size is much greater than the sample size 
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    #   - Insure the fields are identical in both sample and population
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    #
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    pop = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),150),"y":np.random.choice( np.random.randint(1,10),150) ,"q":np.random.choice( np.random.randint(1,10),150)})
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    pop = pd.DataFrame({"x":np.random.choice( np.random.randint(1,10),150),"y":np.random.choice( np.random.randint(1,10),150) ,"z":np.random.choice( np.random.randint(1,10),150),"r":np.random.choice( np.random.randint(1,10),150)})
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					    mydf.risk.evaluate(pop=pop)
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
					
 | 
				
			
			
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
				 | 
				 | 
				
					
 
 |