| 
						
						
							
								
							
						
						
					 | 
					 | 
					@ -153,7 +153,7 @@ class Binary :
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    """
 | 
					 | 
					 | 
					 | 
					    """
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    This is a utility class to import and export a data to/from a binary matrix
 | 
					 | 
					 | 
					 | 
					    This is a utility class to import and export a data to/from a binary matrix
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    """
 | 
					 | 
					 | 
					 | 
					    """
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    def __stream(self,column) :
 | 
					 | 
					 | 
					 | 
					    def __stream(self,column,size=-1) :
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        """
 | 
					 | 
					 | 
					 | 
					        """
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        This function will convert a column into a binary matrix with the value-space representing each column of the resulting matrix        
 | 
					 | 
					 | 
					 | 
					        This function will convert a column into a binary matrix with the value-space representing each column of the resulting matrix        
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        :column a column vector i.e every item is a row
 | 
					 | 
					 | 
					 | 
					        :column a column vector i.e every item is a row
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
					 | 
					@ -162,12 +162,19 @@ class Binary :
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        
 | 
					 | 
					 | 
					 | 
					        
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        values = column.dropna().unique() 
 | 
					 | 
					 | 
					 | 
					        values = column.dropna().unique() 
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        values.sort()
 | 
					 | 
					 | 
					 | 
					        values.sort()
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					        column = column.values
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        #
 | 
					 | 
					 | 
					 | 
					        #
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        # Let's treat the case of missing values i.e nulls 
 | 
					 | 
					 | 
					 | 
					        # Let's treat the case of missing values i.e nulls 
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        #       
 | 
					 | 
					 | 
					 | 
					        #       
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        row_count,col_count = column.size,values.size
 | 
					 | 
					 | 
					 | 
					        row_count,col_count = column.size,values.size
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					        if row_count * col_count > size and row_count < size:
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					            N = np.divide(size,row_count).astype(int) 
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					            i = np.random.choice(col_count,N)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					            values = values[-i]
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					            col_count = N
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        matrix = [ np.zeros(col_count) for i in np.arange(row_count)]
 | 
					 | 
					 | 
					 | 
					       
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					        matrix = [ np.zeros(col_count,dtype=np.float32) for i in np.arange(row_count)]
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        #
 | 
					 | 
					 | 
					 | 
					        #
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        # let's create a binary matrix of the feature that was passed in
 | 
					 | 
					 | 
					 | 
					        # let's create a binary matrix of the feature that was passed in
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        # The indices of the matrix are inspired by classical x,y axis 
 | 
					 | 
					 | 
					 | 
					        # The indices of the matrix are inspired by classical x,y axis 
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
					 | 
					@ -176,14 +183,31 @@ class Binary :
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            
 | 
					 | 
					 | 
					 | 
					            
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            for yi in np.arange(row_count) :
 | 
					 | 
					 | 
					 | 
					            for yi in np.arange(row_count) :
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                value   = column[yi]
 | 
					 | 
					 | 
					 | 
					                value   = column[yi]
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                if value not in values :
 | 
					 | 
					 | 
					 | 
					                # if value not in values :
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                    continue
 | 
					 | 
					 | 
					 | 
					                #     continue
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                xi = np.where(values == value)    
 | 
					 | 
					 | 
					 | 
					                xi = np.where(values == value)    
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					                if xi and xi[0].size > 0:         
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                    xi      = xi[0][0] #-- column index            
 | 
					 | 
					 | 
					 | 
					                    xi      = xi[0][0] #-- column index            
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                    matrix[yi][xi] = 1
 | 
					 | 
					 | 
					 | 
					                    matrix[yi][xi] = 1
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        
 | 
					 | 
					 | 
					 | 
					        
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        return matrix
 | 
					 | 
					 | 
					 | 
					        return pd.DataFrame(matrix,columns=values)
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    def Export(self,df) :
 | 
					 | 
					 | 
					 | 
					    def apply(self,column,size):
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					        return self.__stream(column,size)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    def get_column_values(self,column,size=-1):
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					        values = column.dropna().unique() 
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					        values.sort()
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					        
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					        #
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					        # Let's treat the case of missing values i.e nulls 
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					        #       
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					        row_count,col_count = column.size,values.size
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					        if row_count * col_count > size and row_count < size:
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					            N = np.divide(size,row_count).astype(int) 
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					            i = np.random.choice(col_count,N)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					            values = values[-i]
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					        return values
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    def _Export(self,df) :
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        """
 | 
					 | 
					 | 
					 | 
					        """
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        This function will convert a data-frame to a binary matrix
 | 
					 | 
					 | 
					 | 
					        This function will convert a data-frame to a binary matrix
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        :return _map,matrix
 | 
					 | 
					 | 
					 | 
					        :return _map,matrix
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
					 | 
					@ -192,8 +216,9 @@ class Binary :
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        # This will give us a map of how each column was mapped to a bitstream
 | 
					 | 
					 | 
					 | 
					        # This will give us a map of how each column was mapped to a bitstream
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        
 | 
					 | 
					 | 
					 | 
					        
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        # _map = df.fillna(np.nan).apply(lambda column: self.__stream(column),axis=0)
 | 
					 | 
					 | 
					 | 
					        # _map = df.fillna(np.nan).apply(lambda column: self.__stream(column),axis=0)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        _map = df.fillna('').apply(lambda column: self.__stream(column),axis=0)
 | 
					 | 
					 | 
					 | 
					        # _map = df.fillna(np.nan).apply(lambda column: column,axis=0)
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        
 | 
					 | 
					 | 
					 | 
					        
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					        print (df.fillna(np.nan).apply(lambda column: self.__stream(column),axis=0))
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        #
 | 
					 | 
					 | 
					 | 
					        #
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        # We will merge this to have a healthy matrix
 | 
					 | 
					 | 
					 | 
					        # We will merge this to have a healthy matrix
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        _matrix =  _map.apply(lambda row: list(list(itertools.chain(*row.values.tolist()))),axis=1)
 | 
					 | 
					 | 
					 | 
					        _matrix =  _map.apply(lambda row: list(list(itertools.chain(*row.values.tolist()))),axis=1)
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
					 | 
					@ -239,37 +264,41 @@ if __name__ == '__main__' :
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        --pseudo    will create pseudonyms for a given
 | 
					 | 
					 | 
					 | 
					        --pseudo    will create pseudonyms for a given
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        --export    will export data to a specified location
 | 
					 | 
					 | 
					 | 
					        --export    will export data to a specified location
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    """
 | 
					 | 
					 | 
					 | 
					    """
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    has_basic = 'dataset' in SYS_ARGS.keys() and 'table' in SYS_ARGS.keys() and 'key' in SYS_ARGS.keys()
 | 
					 | 
					 | 
					 | 
					    df = pd.read_csv('sample.csv')
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    has_action= 'export' in SYS_ARGS.keys() or 'pseudo' in SYS_ARGS.keys()
 | 
					 | 
					 | 
					 | 
					    print ( pd.get_dummies(df.race))
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    if has_basic and has_action :
 | 
					 | 
					 | 
					 | 
					    print ( (Binary()).apply(df.race, 30))
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        builder = Builder()
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        if 'export' in SYS_ARGS :
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            print ()
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            print ("exporting ....")
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            if not os.path.exists(SYS_ARGS['export']) :
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                os.mkdir(SYS_ARGS['export'])
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            SQL = builder.encode(**SYS_ARGS)
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            #
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            # Assuming the user wants to filter the records returned :
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            #
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					
 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            credentials = service_account.Credentials.from_service_account_file(SYS_ARGS['key'])
 | 
					 | 
					 | 
					 | 
					    # has_basic = 'dataset' in SYS_ARGS.keys() and 'table' in SYS_ARGS.keys() and 'key' in SYS_ARGS.keys()
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            df  = pd.read_gbq(SQL,credentials =credentials,dialect='standard')
 | 
					 | 
					 | 
					 | 
					    # has_action= 'export' in SYS_ARGS.keys() or 'pseudo' in SYS_ARGS.keys()
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            FILENAME = os.sep.join([SYS_ARGS['export'],SYS_ARGS['table']+'.csv'])
 | 
					 | 
					 | 
					 | 
					    # if has_basic and has_action :
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            #
 | 
					 | 
					 | 
					 | 
					    #     builder = Builder()
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            # This would allow us to export it to wherever we see fit
 | 
					 | 
					 | 
					 | 
					    #     if 'export' in SYS_ARGS :
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            print (FILENAME)
 | 
					 | 
					 | 
					 | 
					    #         print ()
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            df.to_csv(FILENAME,index=False)
 | 
					 | 
					 | 
					 | 
					    #         print ("exporting ....")
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            f = open(FILENAME.replace('.csv','.sql'),'w+')
 | 
					 | 
					 | 
					 | 
					    #         if not os.path.exists(SYS_ARGS['export']) :
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            f.write(SQL)
 | 
					 | 
					 | 
					 | 
					    #             os.mkdir(SYS_ARGS['export'])
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            f.close()
 | 
					 | 
					 | 
					 | 
					    #         SQL = builder.encode(**SYS_ARGS)
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        elif 'pseudo' in SYS_ARGS :
 | 
					 | 
					 | 
					 | 
					    #         #
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					            builder.process(**SYS_ARGS)
 | 
					 | 
					 | 
					 | 
					    #         # Assuming the user wants to filter the records returned :
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					    else:
 | 
					 | 
					 | 
					 | 
					    #         #
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        print ("")
 | 
					 | 
					 | 
					 | 
					            
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        print (SYS_ARGS.keys())
 | 
					 | 
					 | 
					 | 
					    #         credentials = service_account.Credentials.from_service_account_file(SYS_ARGS['key'])
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        print ("has basic ",has_basic)
 | 
					 | 
					 | 
					 | 
					    #         df  = pd.read_gbq(SQL,credentials =credentials,dialect='standard')
 | 
				
			
			
				
				
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        print ("has action ",has_action)
 | 
					 | 
					 | 
					 | 
					    #         FILENAME = os.sep.join([SYS_ARGS['export'],SYS_ARGS['table']+'.csv'])
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    #         #
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    #         # This would allow us to export it to wherever we see fit
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    #         print (FILENAME)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    #         df.to_csv(FILENAME,index=False)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    #         f = open(FILENAME.replace('.csv','.sql'),'w+')
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    #         f.write(SQL)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    #         f.close()
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    #     elif 'pseudo' in SYS_ARGS :
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    #         builder.process(**SYS_ARGS)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    # else:
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    #     print ("")
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    #     print (SYS_ARGS.keys())
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    #     print ("has basic ",has_basic)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					    #     print ("has action ",has_action)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					# pseudonym.apply(table='person',dataset='wgan_original',key='./curation-test-2.json')        
 | 
					 | 
					 | 
					 | 
					# pseudonym.apply(table='person',dataset='wgan_original',key='./curation-test-2.json')        
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					# args = {"dataset":"wgan_original","table":"observation","key":"./curation-test-2.json"}
 | 
					 | 
					 | 
					 | 
					# args = {"dataset":"wgan_original","table":"observation","key":"./curation-test-2.json"}
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					# builder = Builder()
 | 
					 | 
					 | 
					 | 
					# builder = Builder()
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
					 | 
					
 
 |