| 
						
						
							
								
							
						
						
					 | 
					 | 
					@ -584,7 +584,7 @@ class Predict(GNet):
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                p = 0 not in df.sum(axis=1).values
 | 
					 | 
					 | 
					 | 
					                                p = 0 not in df.sum(axis=1).values
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                x = df.sum(axis=1).values
 | 
					 | 
					 | 
					 | 
					                                x = df.sum(axis=1).values
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                
 | 
					 | 
					 | 
					 | 
					                                
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                if np.divide( np.sum(x), x.size)  > .9 or p and np.sum(x) == x.size:
 | 
					 | 
					 | 
					 | 
					                                if x.max() == 1 and np.divide( np.sum(x), x.size)  > .9 or p and np.sum(x) == x.size and x.size == self.values.size:
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                        ratio.append(np.divide( np.sum(x), x.size))
 | 
					 | 
					 | 
					 | 
					                                        ratio.append(np.divide( np.sum(x), x.size))
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                        found.append(df)
 | 
					 | 
					 | 
					 | 
					                                        found.append(df)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                        if i == CANDIDATE_COUNT:
 | 
					 | 
					 | 
					 | 
					                                        if i == CANDIDATE_COUNT:
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
					 | 
					@ -606,7 +606,9 @@ class Predict(GNet):
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                        
 | 
					 | 
					 | 
					 | 
					                        
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                        # r = np.zeros((self.ROW_COUNT,len(columns)))
 | 
					 | 
					 | 
					 | 
					                        # r = np.zeros((self.ROW_COUNT,len(columns)))
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                        # r = np.zeros(self.ROW_COUNT)
 | 
					 | 
					 | 
					 | 
					                        # r = np.zeros(self.ROW_COUNT)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                        
 | 
					 | 
					 | 
					 | 
					                        if self.logger :
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					                                info = {"found":len(found),"selected":INDEX, "ratio": ratio[INDEX],"rows":df.shape[0],"cols":df.shape[1]}
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					                                self.logger.write({"module":"gan-generate","action":"generate","input":info})
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                        df.columns = self.values
 | 
					 | 
					 | 
					 | 
					                        df.columns = self.values
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                        if len(found):
 | 
					 | 
					 | 
					 | 
					                        if len(found):
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                # print (len(found),NTH_VALID_CANDIDATE)    
 | 
					 | 
					 | 
					 | 
					                                # print (len(found),NTH_VALID_CANDIDATE)    
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
					 | 
					
 
 |