|
|
|
@ -144,20 +144,22 @@ def generate(**_args):
|
|
|
|
|
"""
|
|
|
|
|
partition = _args['partition'] if 'partition' in _args else None
|
|
|
|
|
if not partition :
|
|
|
|
|
LOG_DIR = os.sep.join([_args['logs'],'output',_args['context']])
|
|
|
|
|
MAP_FLDER = os.sep.join([_args['logs'],'output',_args['context']])
|
|
|
|
|
# f = open(os.sep.join([_args['logs'],'output',_args['context'],'map.json']))
|
|
|
|
|
else:
|
|
|
|
|
LOG_DIR = os.sep.join([_args['logs'],'output',_args['context'],str(partition)])
|
|
|
|
|
MAP_FOLDER = os.sep.join([_args['logs'],'output',_args['context'],str(partition)])
|
|
|
|
|
# f = open(os.sep.join([_args['logs'],'output',_args['context'],str(partition),'map.json']))
|
|
|
|
|
f = open(os.sep.join([LOG_DIR,'map.json']))
|
|
|
|
|
f = open(os.sep.join([MAP_FOLDER,'map.json']))
|
|
|
|
|
_map = json.loads(f.read())
|
|
|
|
|
f.close()
|
|
|
|
|
#
|
|
|
|
|
#
|
|
|
|
|
# if 'file' in _args :
|
|
|
|
|
# df = pd.read_csv(_args['file'])
|
|
|
|
|
# else:
|
|
|
|
|
# df = _args['data'] if not isinstance(_args['data'],str) else pd.read_csv(_args['data'])
|
|
|
|
|
args = {"context":_args['context'],"max_epochs":_args['max_epochs'],"candidates":_args['candidates']}
|
|
|
|
|
args['logs'] = LOG_DIR if 'logs' in _args else 'logs'
|
|
|
|
|
args['logs'] = _args['logs'] if 'logs' in _args else 'logs'
|
|
|
|
|
args ['max_epochs'] = _args['max_epochs']
|
|
|
|
|
# args['matrix_size'] = _matrix.shape[0]
|
|
|
|
|
args['batch_size'] = 2000
|
|
|
|
@ -177,7 +179,6 @@ def generate(**_args):
|
|
|
|
|
lparams = {'columns':None}
|
|
|
|
|
if partition :
|
|
|
|
|
lparams['partition'] = partition
|
|
|
|
|
|
|
|
|
|
handler.load_meta(**lparams)
|
|
|
|
|
#
|
|
|
|
|
# Let us now format the matrices by reverting them to a data-frame with values
|
|
|
|
|