@ -160,20 +160,17 @@ class Binary :
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        """ 
 
					 
					 
					 
					        """ 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        # values = np.unique(column)     
 
					 
					 
					 
					        # values = np.unique(column)     
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        
 
					 
					 
					 
					        
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        values  =  column . dropna ( ) . unique ( )  
 
					 
					 
					 
					        # values = column.dropna().unique()  
 
				
			 
			
				
				
			
		
	
		
		
			
				
					
					 
					 
					 
					        values . sort ( ) 
 
					 
					 
					 
					        
 
				
			 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					        # values.sort() 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					        # column = column.values 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					        values  =  self . get_column ( column , size ) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        column  =  column . values 
 
					 
					 
					 
					        column  =  column . values 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        # 
 
					 
					 
					 
					        # 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        # Let's treat the case of missing values i.e nulls  
 
					 
					 
					 
					        # Let's treat the case of missing values i.e nulls  
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        #        
 
					 
					 
					 
					        #        
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        row_count , col_count  =  column . size , values . size 
 
					 
					 
					 
					        row_count , col_count  =  column . size , values . size 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        # if row_count * col_count > size and row_count < size: 
 
					 
					 
					 
					        # if row_count * col_count > size and row_count < size: 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        if  col_count  >  size  : 
 
					 
					 
					 
					 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					            # N = np.divide(size,row_count).astype(int)  
 
					 
					 
					 
					 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					            # N =  
 
					 
					 
					 
					 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					            i  =  np . random . choice ( col_count , size ) 
 
					 
					 
					 
					 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					            values  =  values [ - i ] 
 
					 
					 
					 
					 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					            col_count  =  size 
 
					 
					 
					 
					 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					            
 
					 
					 
					 
					            
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					
 
					 
					 
					 
					
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					       
 
					 
					 
					 
					       
 
				
			 
			
		
	
	
		
		
			
				
					
						
						
						
							
								 
							 
						
					 
					 
					@ -196,7 +193,17 @@ class Binary :
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        return  pd . DataFrame ( matrix , columns = values ) 
 
					 
					 
					 
					        return  pd . DataFrame ( matrix , columns = values ) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					    def  apply ( self , column , size ) : 
 
					 
					 
					 
					    def  apply ( self , column , size ) : 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        return  self . __stream ( column , size ) 
 
					 
					 
					 
					        return  self . __stream ( column , size ) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					    def  get_column_values ( self , column , size = - 1 ) : 
 
					 
					 
					 
					    def  get_column ( self , column , size = - 1 ) : 
 
				
			 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					        """ 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					        This  function  will  return  the  columns  that  are  available  for  processing  . . . 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					        """ 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					        values  =  column . dropna ( ) . value_counts ( ) . index 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					        if  size  >  0  : 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					            values  =  values [ : size ] 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					            values . sort_values ( ) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					        return  values 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					            
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					 
					 
					 
					 
					    def  _get_column_values ( self , column , size = - 1 ) : 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        values  =  column . dropna ( ) . unique ( )  
 
					 
					 
					 
					        values  =  column . dropna ( ) . unique ( )  
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        values . sort ( ) 
 
					 
					 
					 
					        values . sort ( ) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        
 
					 
					 
					 
					        
 
				
			 
			
		
	
	
		
		
			
				
					
						
						
						
							
								 
							 
						
					 
					 
					@ -204,7 +211,7 @@ class Binary :
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        # Let's treat the case of missing values i.e nulls  
 
					 
					 
					 
					        # Let's treat the case of missing values i.e nulls  
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        #        
 
					 
					 
					 
					        #        
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        row_count , col_count  =  column . size , values . size 
 
					 
					 
					 
					        row_count , col_count  =  column . size , values . size 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        if  col_count  >  size  : 
 
					 
					 
					 
					        if  col_count  >  size  and  size   >  0 : 
 
				
			 
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 
					 
					 
					            # N = np.divide(size,row_count).astype(int)  
 
					 
					 
					 
					            # N = np.divide(size,row_count).astype(int)  
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					            # N =  
 
					 
					 
					 
					            # N =  
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					            i  =  np . random . choice ( col_count , size ) 
 
					 
					 
					 
					            i  =  np . random . choice ( col_count , size ) 
 
				
			 
			
		
	
	
		
		
			
				
					
						
							
								 
							 
						
						
							
								 
							 
						
						
					 
					 
					@ -270,8 +277,8 @@ if __name__ == '__main__' :
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					        - - export     will  export  data  to  a  specified  location 
 
					 
					 
					 
					        - - export     will  export  data  to  a  specified  location 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					    """ 
 
					 
					 
					 
					    """ 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					    df  =  pd . read_csv ( ' sample.csv ' ) 
 
					 
					 
					 
					    df  =  pd . read_csv ( ' sample.csv ' ) 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					    print  (  pd. get_dummies ( df . race  ) ) 
 
					 
					 
					 
					    print  (  df. race . value_counts (  ) ) 
 
				
			 
			
				
				
			
		
	
		
		
			
				
					
					 
					 
					 
					    print  (  ( Binary ( ) ) . apply ( df . race ,  2 ) ) 
 
					 
					 
					 
					    print  (  ( Binary ( ) ) . apply ( df [ ' race ' ] ,  3 ) ) 
 
				
			 
			
				
				
			
		
	
		
		
	
		
		
	
		
		
			
				
					
					 
					 
					 
					
 
					 
					 
					 
					
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					    # has_basic = 'dataset' in SYS_ARGS.keys() and 'table' in SYS_ARGS.keys() and 'key' in SYS_ARGS.keys() 
 
					 
					 
					 
					    # has_basic = 'dataset' in SYS_ARGS.keys() and 'table' in SYS_ARGS.keys() and 'key' in SYS_ARGS.keys() 
 
				
			 
			
		
	
		
		
			
				
					
					 
					 
					 
					    # has_action= 'export' in SYS_ARGS.keys() or 'pseudo' in SYS_ARGS.keys() 
 
					 
					 
					 
					    # has_action= 'export' in SYS_ARGS.keys() or 'pseudo' in SYS_ARGS.keys()