|
|
@ -594,6 +594,7 @@ class Predict(GNet):
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# In case we are dealing with actual values like diagnosis codes we can perform
|
|
|
|
# In case we are dealing with actual values like diagnosis codes we can perform
|
|
|
|
#
|
|
|
|
#
|
|
|
|
|
|
|
|
|
|
|
|
INDEX = np.random.choice(np.arange(len(found)),1)[0]
|
|
|
|
INDEX = np.random.choice(np.arange(len(found)),1)[0]
|
|
|
|
INDEX = ratio.index(np.max(ratio))
|
|
|
|
INDEX = ratio.index(np.max(ratio))
|
|
|
|
df = found[INDEX]
|
|
|
|
df = found[INDEX]
|
|
|
@ -609,7 +610,9 @@ class Predict(GNet):
|
|
|
|
# let's get the missing rows (if any) ...
|
|
|
|
# let's get the missing rows (if any) ...
|
|
|
|
#
|
|
|
|
#
|
|
|
|
ii = df.apply(lambda row: np.sum(row) == 0 ,axis=1)
|
|
|
|
ii = df.apply(lambda row: np.sum(row) == 0 ,axis=1)
|
|
|
|
if ii.shape[0] == 0 :
|
|
|
|
# print ([' **** ',ii.sum()])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if ii.shape[0] > 0 :
|
|
|
|
#
|
|
|
|
#
|
|
|
|
#@TODO Have this be a configurable variable
|
|
|
|
#@TODO Have this be a configurable variable
|
|
|
|
missing = np.repeat(0, np.where(ii==1)[0].size)
|
|
|
|
missing = np.repeat(0, np.where(ii==1)[0].size)
|
|
|
|