parent
0efd4b13bc
commit
936bd3ee0b
@ -0,0 +1,76 @@
|
||||
"""
|
||||
This file is designed to specify the appliction of pre/post-processing code.
|
||||
The pre-processing code gets applied after the data has been loaded
|
||||
The post-processing code get applied after the data has been generated for instance:
|
||||
-approximation code/logic; date shifting; suppression; adding noise
|
||||
-
|
||||
"""
|
||||
import numpy as np
|
||||
from datetime import datetime, timedelta
|
||||
import time
|
||||
|
||||
class Phase:
|
||||
def __init__(self,**_args):
|
||||
self._df = _args['data']
|
||||
self.callback = _args['callback']
|
||||
def apply(self,**_args):
|
||||
"""
|
||||
:param data data-frame
|
||||
:param _info arguments needed to be applied
|
||||
:param callback callback function once done
|
||||
"""
|
||||
raise Exception ("Function needs to be Implemented")
|
||||
class Pre(Phase):
|
||||
pass
|
||||
class Post(Phase):
|
||||
def __init__(self,**_args):
|
||||
super().__init__(**_args)
|
||||
pass
|
||||
|
||||
class Date(Post):
|
||||
def __init__(self,**_args):
|
||||
super().__init__(**_args)
|
||||
def make(self,**_args):
|
||||
"""
|
||||
This function generates a random date given a year and optionally a set of days from the randomly generated date
|
||||
:param year initial value of a year
|
||||
:param offset list of days between initial date
|
||||
"""
|
||||
if _args['year'] in ['',None,np.nan] :
|
||||
return None
|
||||
year = int(_args['year'])
|
||||
|
||||
offset = _args['offset'] if 'offset' in _args else 0
|
||||
month = np.random.randint(1,13)
|
||||
if month == 2:
|
||||
_end = 28 if year % 4 != 0 else 29
|
||||
else:
|
||||
_end = 31 if month in [1,3,5,7,8,10,12] else 30
|
||||
day = np.random.randint(1,_end)
|
||||
|
||||
#-- synthetic date
|
||||
_date = datetime(year=year,month=month,day=day,minute=0,hour=0,second=0)
|
||||
FORMAT = '%Y-%m-%d' if 'format' not in _args else _args['format']
|
||||
|
||||
|
||||
|
||||
# print ([_name,FORMAT, _date.strftime(FORMAT)])
|
||||
r = []
|
||||
if offset :
|
||||
r = [_date.strftime(FORMAT)]
|
||||
for _delta in offset :
|
||||
_date = _date + timedelta(_delta)
|
||||
r.append(_date.strptime(FORMAT))
|
||||
return r
|
||||
else:
|
||||
return _date.strftime(FORMAT)
|
||||
|
||||
def apply(self,**_args):
|
||||
"""
|
||||
|
||||
"""
|
||||
pass
|
||||
class Approximate(Post):
|
||||
def apply(**_args):
|
||||
pass
|
||||
def applyWithRange(**_args):
|
@ -0,0 +1,105 @@
|
||||
"""
|
||||
This file handles state-space of the data training/generation process i.e Upon specification of the pre/post conditiions
|
||||
"""
|
||||
"""
|
||||
This file handles state-space of the data training/generation process i.e Upon specification of the pre/post conditions,
|
||||
The specifications for this are as follows (within an entry of the configuration)
|
||||
{
|
||||
"state":{
|
||||
"pre":[{"approximate":{"field":"int"}},{"newdate":{"field":"format"}}],"post":[{"limit":10}]
|
||||
}
|
||||
}
|
||||
"""
|
||||
import importlib
|
||||
import importlib.util
|
||||
import sys
|
||||
from datetime import datetime
|
||||
from data.maker.state.default import *
|
||||
import os
|
||||
|
||||
|
||||
class State :
|
||||
@staticmethod
|
||||
def apply(_data,lpointers):
|
||||
"""
|
||||
This function applies a pipeline against a given data-frame, the calling code must decide whether it is a pre/post
|
||||
:_data data-frame
|
||||
:_lpointers functions modules returned by instance (module,_args)
|
||||
"""
|
||||
for _item in lpointers :
|
||||
if _item is None :
|
||||
continue
|
||||
|
||||
pointer = _item['module']
|
||||
_args = _item['args']
|
||||
|
||||
_data = pointer(_data,_args)
|
||||
return _data
|
||||
@staticmethod
|
||||
def instance(_args):
|
||||
pre = []
|
||||
post=[]
|
||||
|
||||
out = {}
|
||||
for key in _args :
|
||||
#
|
||||
# If the item has a path property is should be ignored
|
||||
path = _args[key]['path'] if 'path' in _args[key] else ''
|
||||
out[key] = [ State._build(dict(_item,**{'path':path})) if 'path' not in _item else State._build(_item) for _item in _args[key]['pipeline']]
|
||||
|
||||
return out
|
||||
# if 'pre' in _args:
|
||||
# path = _args['pre']['path'] if 'path' in _args['pre'] else ''
|
||||
|
||||
# pre = [ State._build(dict(_item,**{'path':path})) for _item in _args['pre']['pipeline']]
|
||||
# else:
|
||||
# path = _args['post']['path'] if 'path' in _args['post'] else ''
|
||||
|
||||
# post = [ State._build(dict(_item,**{'path':path})) for _item in _args['post']['pipeline']]
|
||||
# return {'pre':pre,'post':post}
|
||||
|
||||
@staticmethod
|
||||
def _extract(_entry):
|
||||
|
||||
_name = list(set(_entry.keys()) - set(['path']) )
|
||||
_name = _name[0]
|
||||
path = _entry['path'] if 'path' in _entry and os.path.exists(_entry['path']) else ''
|
||||
return {"module": _name,"args": _entry[_name],'name':_name,'path':path}
|
||||
pass
|
||||
@staticmethod
|
||||
def _build(_args):
|
||||
|
||||
_info = State._extract(_args)
|
||||
# _info = dict(_args,**_info)
|
||||
|
||||
_info['module'] = State._instance(_info)
|
||||
return _info if _info['module'] is not None else None
|
||||
|
||||
@staticmethod
|
||||
def _instance(_args):
|
||||
"""
|
||||
:path optional path of the file on disk
|
||||
:module name of the function
|
||||
"""
|
||||
|
||||
_name = _args['module']
|
||||
|
||||
if 'path' in _args and os.path.exists(_args['path']):
|
||||
path= _args['path']
|
||||
|
||||
spec = importlib.util.spec_from_file_location(_name, path)
|
||||
module = importlib.util.module_from_spec(spec)
|
||||
spec.loader.exec_module(module)
|
||||
else:
|
||||
#
|
||||
# Probably calling a built-in module (should be in this file)
|
||||
|
||||
module = sys.modules['data.maker.state.default']
|
||||
|
||||
return getattr(module,_name) if hasattr(module,_name) else None
|
||||
|
||||
#
|
||||
# Adding a few custom functions that should be able to help ....
|
||||
# These functions can be called without specifying a path
|
||||
#
|
||||
|
@ -0,0 +1,116 @@
|
||||
"""
|
||||
This file contains default functions applied to a data-frame/dataset as pre/post processing jobs.
|
||||
The functions are organized in a pipeline i.e the data will be applied to each function
|
||||
|
||||
Custom functions :
|
||||
functions must tak 2 arguments (_data,_args) : where _data is a data frame and _arg is a object describing the input parameters
|
||||
"""
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from datetime import datetime, timedelta
|
||||
|
||||
|
||||
def limit(_data,size):
|
||||
"""
|
||||
...,{limit:size}
|
||||
"""
|
||||
|
||||
# size = int(_args['limit'])
|
||||
return _data.iloc[:size]
|
||||
def format(_data,_schema):
|
||||
"""
|
||||
This function enforces a schema against a data-frame, this may or may not work depending on the persistence storage
|
||||
:_data data-frame containing all data
|
||||
:_args schema to enforce the data, we are expecting the format as a list of {name,type,description}
|
||||
"""
|
||||
return _data
|
||||
|
||||
def approximate(_data,_args):
|
||||
"""
|
||||
:_args Object of {field:type}
|
||||
This function will approximate n-fields in the data given it's distribution
|
||||
"""
|
||||
_m = {'int':int,'float':float,'integer':int,'double':float}
|
||||
columns = list(_args.keys())
|
||||
for _name in columns :
|
||||
if _name not in _data :
|
||||
continue
|
||||
otype = _args[_name]
|
||||
otype = str if otype not in _m else _m[otype]
|
||||
_data.loc[:,_name] = np.random.uniform(_data[_name].values).astype(otype)
|
||||
|
||||
return _data
|
||||
def split_date(_data,_args):
|
||||
"""
|
||||
This function takes a field and applies the format from other fields
|
||||
:_data data-frame
|
||||
:_config configuration entry {column:{format,column:format,type}}
|
||||
"""
|
||||
_columns = list(_args.keys())
|
||||
_m = {'int':int,'float':float,'integer':int,'double':float}
|
||||
for _name in _columns :
|
||||
_iname = _args[_name]['column']
|
||||
_iformat = _args[_name]['format']['in']
|
||||
_oformat = _args[_name]['format']['out']
|
||||
_otype = str if 'type' not in _args[_name] else _args[_name]['type']
|
||||
_data.loc[:,_name] = _data[_iname].apply(lambda _date: datetime.strftime(datetime.strptime(str(_date),_iformat),_oformat)).astype(_otype)
|
||||
return _data
|
||||
def newdate(_data,_args):
|
||||
"""
|
||||
This function creates a new data on a given column from another
|
||||
:_data data frame
|
||||
:_args configuration column:{format,column}
|
||||
"""
|
||||
_columns = list(_args.keys())
|
||||
for _name in _columns :
|
||||
|
||||
format = _args[_name]['format']
|
||||
ROW_COUNT = _data[_name].size
|
||||
if 'column' in _args[_name] :
|
||||
srcName = _args[_name]['column']
|
||||
years = _data[srcName].values
|
||||
else:
|
||||
years = np.random.choice(np.arange(datetime.now().year- 90,datetime.now().year),ROW_COUNT)
|
||||
_data.loc[:,_name] = [ _makedate(year = years[_index],format = format) for _index in np.arange(ROW_COUNT)]
|
||||
|
||||
return _data
|
||||
def _makedate(**_args):
|
||||
"""
|
||||
This function creates a new date and applies it to a column
|
||||
:_data data-frame with columns
|
||||
:_args arguments for col1:format
|
||||
"""
|
||||
_columns = list(_args.keys())
|
||||
|
||||
# if _args['year'] in ['',None,np.nan] :
|
||||
# year = np.random.choice(np.arange(1920,222),1)
|
||||
# else:
|
||||
# year = int(_args['year'])
|
||||
year = int(_args['year'])
|
||||
offset = _args['offset'] if 'offset' in _args else 0
|
||||
month = np.random.randint(1,13)
|
||||
if month == 2:
|
||||
_end = 28 if year % 4 != 0 else 29
|
||||
else:
|
||||
_end = 31 if month in [1,3,5,7,8,10,12] else 30
|
||||
day = np.random.randint(1,_end)
|
||||
|
||||
#-- synthetic date
|
||||
_date = datetime(year=year,month=month,day=day,minute=0,hour=0,second=0)
|
||||
FORMAT = '%Y-%m-%d'
|
||||
|
||||
if 'format' in _args:
|
||||
FORMAT = _args['format']
|
||||
|
||||
|
||||
# print ([_name,FORMAT, _date.strftime(FORMAT)])
|
||||
r = []
|
||||
if offset :
|
||||
r = [_date.strftime(FORMAT)]
|
||||
for _delta in offset :
|
||||
_date = _date + timedelta(_delta)
|
||||
r.append(_date.strptime(FORMAT))
|
||||
return r
|
||||
else:
|
||||
return _date.strftime(FORMAT)
|
||||
|
Loading…
Reference in new issue