| 
						
						
							
								
							
						
						
					 | 
					 | 
					@ -300,12 +300,19 @@ class Components :
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
									
 | 
					 | 
					 | 
					 | 
									
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
									_df = _df[list(set(_df.columns)  - set(skip_columns))].copy()
 | 
					 | 
					 | 
					 | 
									_df = _df[list(set(_df.columns)  - set(skip_columns))].copy()
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
									if x_cols :
 | 
					 | 
					 | 
					 | 
									if x_cols :
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
										_approx = {}
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
										for _col in x_cols :
 | 
					 | 
					 | 
					 | 
										for _col in x_cols :
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
											if real_df[_col].unique().size > 0 :
 | 
					 | 
					 | 
					 | 
											if real_df[_col].unique().size > 0 :
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
												
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
												_df[_col] = self.approximate(real_df[_col])
 | 
					 | 
					 | 
					 | 
												_df[_col] = self.approximate(real_df[_col])
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
												_approx[_col] = {
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
													"io":{"min":_df[_col].min(),"max":_df[_col].max(),"mean":_df[_col].mean(),"sd":_df[_col].values.std(),"missing": _df[_col].where(_df[_col] == -1).dropna().count(),"zeros":_df[_col].where(_df[_col] == 0).dropna().count()},
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
													"real":{"min":real_df[_col].min(),"max":real_df[_col].max(),"mean":real_df[_col].mean(),"sd":real_df[_col].values.std(),"missing": real_df[_col].where(_df[_col] == -1).dropna().count(),"zeros":real_df[_col].where(_df[_col] == 0).dropna().count()}
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
					 | 
												}
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
											else:
 | 
					 | 
					 | 
					 | 
											else:
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
												_df[_col] = -1
 | 
					 | 
					 | 
					 | 
												_df[_col] = -1
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
									
 | 
					 | 
					 | 
					 | 
										logger.write({"module":"gan-generate","action":"approximate","status":_approx})				
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
									if set(df.columns) & set(_df.columns) :
 | 
					 | 
					 | 
					 | 
									if set(df.columns) & set(_df.columns) :
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
										_columns = set(df.columns) - set(_df.columns)											
 | 
					 | 
					 | 
					 | 
										_columns = set(df.columns) - set(_df.columns)											
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
										df = df[_columns]
 | 
					 | 
					 | 
					 | 
										df = df[_columns]
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
					 | 
					
 
 |