@ -76,13 +76,13 @@ class GNet :
# self.Z_DIM = 128 #self.X_SPACE_SIZE
# self.Z_DIM = 128 #self.X_SPACE_SIZE
self . Z_DIM = 128 #-- used as rows down stream
self . Z_DIM = 128 #-- used as rows down stream
self . G_STRUCTURE = [ self . Z_DIM , self . Z_DIM ]
self . G_STRUCTURE = [ self . Z_DIM , self . Z_DIM ]
if ' real ' in args :
self . D_STRUCTURE = [ args [ ' real ' ] . shape [ 1 ] , 256 , self . Z_DIM ]
PROPOSED_BATCH_PER_GPU = 2000 if ' batch_size ' not in args else int ( args [ ' batch_size ' ] )
PROPOSED_BATCH_PER_GPU = 2000 if ' batch_size ' not in args else int ( args [ ' batch_size ' ] )
if args [ ' real ' ] . shape [ 0 ] < PROPOSED_BATCH_PER_GPU :
self . BATCHSIZE_PER_GPU = PROPOSED_BATCH_PER_GPU
self . BATCHSIZE_PER_GPU = int ( args [ ' real ' ] . shape [ 0 ] * 1 )
if ' real ' in args :
else :
self . D_STRUCTURE = [ args [ ' real ' ] . shape [ 1 ] , 256 , self . Z_DIM ]
self . BATCHSIZE_PER_GPU = PROPOSED_BATCH_PER_GPU
if args [ ' real ' ] . shape [ 0 ] < PROPOSED_BATCH_PER_GPU :
self . BATCHSIZE_PER_GPU = int ( args [ ' real ' ] . shape [ 0 ] * 1 )
# self.BATCHSIZE_PER_GPU = 2000 if 'batch_size' not in args else int(args['batch_size'])
# self.BATCHSIZE_PER_GPU = 2000 if 'batch_size' not in args else int(args['batch_size'])
self . TOTAL_BATCHSIZE = self . BATCHSIZE_PER_GPU * self . NUM_GPUS
self . TOTAL_BATCHSIZE = self . BATCHSIZE_PER_GPU * self . NUM_GPUS
self . STEPS_PER_EPOCH = 256 #int(np.load('ICD9/train.npy').shape[0] / 2000)
self . STEPS_PER_EPOCH = 256 #int(np.load('ICD9/train.npy').shape[0] / 2000)