@ -72,7 +72,7 @@ class GNet :
elif ' label ' in args and len ( args [ ' label ' ] ) == 1 :
elif ' label ' in args and len ( args [ ' label ' ] ) == 1 :
self . NUM_LABELS = args [ ' label ' ] . shape [ 0 ]
self . NUM_LABELS = args [ ' label ' ] . shape [ 0 ]
else :
else :
self . NUM_LABELS = 8
self . NUM_LABELS = None
# self.Z_DIM = 128 #self.X_SPACE_SIZE
# self.Z_DIM = 128 #self.X_SPACE_SIZE
self . Z_DIM = 128 #-- used as rows down stream
self . Z_DIM = 128 #-- used as rows down stream
self . G_STRUCTURE = [ self . Z_DIM , self . Z_DIM ]
self . G_STRUCTURE = [ self . Z_DIM , self . Z_DIM ]
@ -180,14 +180,19 @@ class GNet :
shift = [ 0 ] if self . __class__ . __name__ . lower ( ) == ' generator ' else [ 1 ] #-- not sure what this is doing
shift = [ 0 ] if self . __class__ . __name__ . lower ( ) == ' generator ' else [ 1 ] #-- not sure what this is doing
mean , var = tf . nn . moments ( inputs , shift , keep_dims = True )
mean , var = tf . nn . moments ( inputs , shift , keep_dims = True )
shape = inputs . shape [ 1 ] . value
shape = inputs . shape [ 1 ] . value
offset_m = self . get . variables ( shape = [ n_labels , shape ] , name = ' offset ' + name ,
if labels is not None :
initializer = tf . zeros_initializer )
offset_m = self . get . variables ( shape = [ 1 , shape ] , name = ' offset ' + name ,
scale_m = self . get . variables ( shape = [ n_labels , shape ] , name = ' scale ' + name ,
initializer = tf . zeros_initializer )
initializer = tf . ones_initializer )
scale_m = self . get . variables ( shape = [ n_labels , shape ] , name = ' scale ' + name ,
initializer = tf . ones_initializer )
offset = tf . nn . embedding_lookup ( offset_m , labels )
offset = tf . nn . embedding_lookup ( offset_m , labels )
scale = tf . nn . embedding_lookup ( scale_m , labels )
scale = tf . nn . embedding_lookup ( scale_m , labels )
result = tf . nn . batch_normalization ( inputs , mean , var , offset , scale , 1e-8 )
else :
offset = None
scale = None
result = tf . nn . batch_normalization ( inputs , mean , var , offset , scale , 1e-8 )
return result
return result
def _variable_on_cpu ( self , * * args ) :
def _variable_on_cpu ( self , * * args ) :
@ -248,7 +253,7 @@ class Generator (GNet):
x = args [ ' inputs ' ]
x = args [ ' inputs ' ]
tmp_dim = self . Z_DIM if ' dim ' not in args else args [ ' dim ' ]
tmp_dim = self . Z_DIM if ' dim ' not in args else args [ ' dim ' ]
label = args [ ' label ' ]
label = args [ ' label ' ]
print ( self . NUM_LABELS )
with tf . compat . v1 . variable_scope ( ' G ' , reuse = tf . compat . v1 . AUTO_REUSE , regularizer = l2_regularizer ( 0.00001 ) ) :
with tf . compat . v1 . variable_scope ( ' G ' , reuse = tf . compat . v1 . AUTO_REUSE , regularizer = l2_regularizer ( 0.00001 ) ) :
for i , dim in enumerate ( self . G_STRUCTURE [ : - 1 ] ) :
for i , dim in enumerate ( self . G_STRUCTURE [ : - 1 ] ) :
kernel = self . get . variables ( name = ' W_ ' + str ( i ) , shape = [ tmp_dim , dim ] )
kernel = self . get . variables ( name = ' W_ ' + str ( i ) , shape = [ tmp_dim , dim ] )
@ -331,7 +336,7 @@ class Train (GNet):
self . generator = Generator ( * * args )
self . generator = Generator ( * * args )
self . discriminator = Discriminator ( * * args )
self . discriminator = Discriminator ( * * args )
self . _REAL = args [ ' real ' ]
self . _REAL = args [ ' real ' ]
self . _LABEL = args [ ' label ' ]
self . _LABEL = args [ ' label ' ] if ' label ' in args else None
self . column = args [ ' column ' ]
self . column = args [ ' column ' ]
# print ([" *** ",self.BATCHSIZE_PER_GPU])
# print ([" *** ",self.BATCHSIZE_PER_GPU])
@ -340,7 +345,7 @@ class Train (GNet):
self . logger . write ( self . meta )
self . logger . write ( self . meta )
self . log ( real_shape = list ( self . _REAL . shape ) , label_shape = list ( self . _LABEL . shape ) , meta_data = self . meta )
# self.log (real_shape=list(self._REAL.shape),label_shape = self._LABEL.shape,meta_data=self.meta )
def load_meta ( self , column ) :
def load_meta ( self , column ) :
"""
"""
This function will delegate the calls to load meta data to it ' s dependents
This function will delegate the calls to load meta data to it ' s dependents
@ -363,13 +368,16 @@ class Train (GNet):
stage = args [ ' stage ' ]
stage = args [ ' stage ' ]
real = args [ ' real ' ]
real = args [ ' real ' ]
label = args [ ' label ' ]
label = args [ ' label ' ]
label = tf . cast ( label , tf . int32 )
#
# @TODO: Ziqi needs to explain what's going on here
if label is not None :
m = [ [ i ] for i in np . arange ( self . _LABEL . shape [ 1 ] - 2 ) ]
label = tf . cast ( label , tf . int32 )
label = label [ : , 1 ] * len ( m ) + tf . squeeze (
#
tf . matmul ( label [ : , 2 : ] , tf . constant ( m , dtype = tf . int32 ) )
# @TODO: Ziqi needs to explain what's going on here
)
m = [ [ i ] for i in np . arange ( self . _LABEL . shape [ 1 ] - 2 ) ]
label = label [ : , 1 ] * len ( m ) + tf . squeeze (
tf . matmul ( label [ : , 2 : ] , tf . constant ( m , dtype = tf . int32 ) )
)
# label = label[:,1] * 4 + tf.squeeze( label[:,2]*[[0],[1],[2],[3]] )
# label = label[:,1] * 4 + tf.squeeze( label[:,2]*[[0],[1],[2],[3]] )
z = tf . random . normal ( shape = [ self . BATCHSIZE_PER_GPU , self . Z_DIM ] )
z = tf . random . normal ( shape = [ self . BATCHSIZE_PER_GPU , self . Z_DIM ] )
@ -394,8 +402,13 @@ class Train (GNet):
This function seems to produce
This function seems to produce
"""
"""
features_placeholder = tf . compat . v1 . placeholder ( shape = self . _REAL . shape , dtype = tf . float32 )
features_placeholder = tf . compat . v1 . placeholder ( shape = self . _REAL . shape , dtype = tf . float32 )
labels_placeholder = tf . compat . v1 . placeholder ( shape = self . _LABEL . shape , dtype = tf . float32 )
LABEL_SHAPE = [ None , None ] if self . _LABEL is None else self . _LABEL . shape
dataset = tf . data . Dataset . from_tensor_slices ( ( features_placeholder , labels_placeholder ) )
labels_placeholder = tf . compat . v1 . placeholder ( shape = LABEL_SHAPE , dtype = tf . float32 )
if self . _LABEL is not None :
dataset = tf . data . Dataset . from_tensor_slices ( ( features_placeholder , labels_placeholder ) )
else :
dataset = tf . data . Dataset . from_tensor_slices ( features_placeholder )
# labels_placeholder = None
dataset = dataset . repeat ( 10000 )
dataset = dataset . repeat ( 10000 )
dataset = dataset . batch ( batch_size = 3000 )
dataset = dataset . batch ( batch_size = 3000 )
dataset = dataset . prefetch ( 1 )
dataset = dataset . prefetch ( 1 )
@ -413,7 +426,10 @@ class Train (GNet):
for i in range ( self . NUM_GPUS ) :
for i in range ( self . NUM_GPUS ) :
with tf . device ( ' /gpu: %d ' % i ) :
with tf . device ( ' /gpu: %d ' % i ) :
with tf . name_scope ( ' %s _ %d ' % ( ' TOWER ' , i ) ) as scope :
with tf . name_scope ( ' %s _ %d ' % ( ' TOWER ' , i ) ) as scope :
( real , label ) = iterator . get_next ( )
if self . _LABEL is not None :
( real , label ) = iterator . get_next ( )
else :
real = iterator . get_next ( )
loss , w = self . loss ( scope = scope , stage = stage , real = self . _REAL , label = self . _LABEL )
loss , w = self . loss ( scope = scope , stage = stage , real = self . _REAL , label = self . _LABEL )
#tf.get_variable_scope().reuse_variables()
#tf.get_variable_scope().reuse_variables()
tf . compat . v1 . get_variable_scope ( ) . reuse_variables ( )
tf . compat . v1 . get_variable_scope ( ) . reuse_variables ( )
@ -450,11 +466,12 @@ class Train (GNet):
#with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess:
#with tf.Session(config=tf.ConfigProto(allow_soft_placement=True, log_device_placement=False)) as sess:
with tf . compat . v1 . Session ( config = tf . compat . v1 . ConfigProto ( allow_soft_placement = True , log_device_placement = False ) ) as sess :
with tf . compat . v1 . Session ( config = tf . compat . v1 . ConfigProto ( allow_soft_placement = True , log_device_placement = False ) ) as sess :
sess . run ( init )
sess . run ( init )
sess . run ( iterator_d . initializer ,
sess . run ( iterator_d . initializer ,
feed_dict = { features_placeholder_d : REA L, labels_placeholder_d : LABE L} )
feed_dict = { features_placeholder_d : REA L} )
sess . run ( iterator_g . initializer ,
sess . run ( iterator_g . initializer ,
feed_dict = { features_placeholder_g : REA L, labels_placeholder_g : LABE L} )
feed_dict = { features_placeholder_g : REA L} )
for epoch in range ( 1 , self . MAX_EPOCHS + 1 ) :
for epoch in range ( 1 , self . MAX_EPOCHS + 1 ) :
start_time = time . time ( )
start_time = time . time ( )
w_sum = 0
w_sum = 0
@ -511,9 +528,11 @@ class Predict(GNet):
tf . compat . v1 . reset_default_graph ( )
tf . compat . v1 . reset_default_graph ( )
z = tf . random . normal ( shape = [ self . BATCHSIZE_PER_GPU , self . Z_DIM ] )
z = tf . random . normal ( shape = [ self . BATCHSIZE_PER_GPU , self . Z_DIM ] )
y = tf . compat . v1 . placeholder ( shape = [ self . BATCHSIZE_PER_GPU , self . NUM_LABELS ] , dtype = tf . int32 )
y = tf . compat . v1 . placeholder ( shape = [ self . BATCHSIZE_PER_GPU , self . NUM_LABELS ] , dtype = tf . int32 )
ma = [ [ i ] for i in np . arange ( self . NUM_LABELS - 2 ) ]
if self . _LABEL is not None :
label = y [ : , 1 ] * len ( ma ) + tf . squeeze ( tf . matmul ( y [ : , 2 : ] , tf . constant ( ma , dtype = tf . int32 ) ) )
ma = [ [ i ] for i in np . arange ( self . NUM_LABELS - 2 ) ]
label = y [ : , 1 ] * len ( ma ) + tf . squeeze ( tf . matmul ( y [ : , 2 : ] , tf . constant ( ma , dtype = tf . int32 ) ) )
else :
label = None
fake = self . generator . network ( inputs = z , label = label )
fake = self . generator . network ( inputs = z , label = label )
init = tf . compat . v1 . global_variables_initializer ( )
init = tf . compat . v1 . global_variables_initializer ( )
saver = tf . compat . v1 . train . Saver ( )
saver = tf . compat . v1 . train . Saver ( )
@ -524,13 +543,19 @@ class Predict(GNet):
# sess.run(init)
# sess.run(init)
saver . restore ( sess , model_dir )
saver . restore ( sess , model_dir )
labels = np . zeros ( ( self . ROW_COUNT , self . NUM_LABELS ) )
if self . _LABEL is not None :
labels = np . zeros ( ( self . ROW_COUNT , self . NUM_LABELS ) )
labels = demo
else :
labels = None
found = [ ]
found = [ ]
labels = demo
for i in np . arange ( CANDIDATE_COUNT ) :
for i in np . arange ( CANDIDATE_COUNT ) :
if labels :
f = sess . run ( fake , feed_dict = { y : labels } )
f = sess . run ( fake , feed_dict = { y : labels } )
else :
f = sess . run ( fake )
#
#
# if we are dealing with numeric values only we can perform a simple marginal sum against the indexes
# if we are dealing with numeric values only we can perform a simple marginal sum against the indexes
# The code below will insure we have some acceptable cardinal relationships between id and synthetic values
# The code below will insure we have some acceptable cardinal relationships between id and synthetic values