|
|
|
@ -282,9 +282,11 @@ class Generator (Learner):
|
|
|
|
|
|
|
|
|
|
if _item['type'].upper() in ['DATE','DATETIME','TIMESTAMP'] :
|
|
|
|
|
FORMAT = '%Y-%m-%d'
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
#
|
|
|
|
|
#-- Sometimes data isn't all it's meant to be
|
|
|
|
|
SIZE = -1
|
|
|
|
|
if 'format' in self.info and name in self.info['format'] :
|
|
|
|
|
FORMAT = self.info['format'][name]
|
|
|
|
|
SIZE = 10
|
|
|
|
@ -292,20 +294,34 @@ class Generator (Learner):
|
|
|
|
|
FORMAT = '%Y-%m-%d %H:%M:%S'
|
|
|
|
|
SIZE = 19
|
|
|
|
|
|
|
|
|
|
if SIZE > 0 :
|
|
|
|
|
|
|
|
|
|
values = pd.to_datetime(_df[name], format=FORMAT).astype(str)
|
|
|
|
|
_df[name] = [_date[:SIZE] for _date in values]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
r[name] = FORMAT
|
|
|
|
|
_df[name] = pd.to_datetime(_df[name], format=FORMAT) #.astype('datetime64[ns]')
|
|
|
|
|
# _df[name] = pd.to_datetime(_df[name], format=FORMAT) #.astype('datetime64[ns]')
|
|
|
|
|
if _item['type'] in ['DATETIME','TIMESTAMP']:
|
|
|
|
|
pass #;_df[name] = _df[name].fillna('').astype('datetime64[ns]')
|
|
|
|
|
else:
|
|
|
|
|
_df[name] = _df[name].astype(str)
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
pass
|
|
|
|
|
finally:
|
|
|
|
|
pass
|
|
|
|
|
else:
|
|
|
|
|
# print (_item)
|
|
|
|
|
pass
|
|
|
|
|
_df = _df.replace('NaT','').replace('NA','')
|
|
|
|
|
|
|
|
|
|
#
|
|
|
|
|
# Because types are inferred on the basis of the sample being processed they can sometimes be wrong
|
|
|
|
|
# To help disambiguate we add the schema information
|
|
|
|
|
_type = None
|
|
|
|
|
if 'int' in _df[name].dtypes.name or 'int' in _item['type'].lower():
|
|
|
|
|
_type = np.int
|
|
|
|
|
elif 'float' in _df[name].dtypes.name or 'float' in _item['type'].lower():
|
|
|
|
|
_type = np.float
|
|
|
|
|
if _type :
|
|
|
|
|
_df[name] = _df[name].fillna(0).replace('',0).astype(_type)
|
|
|
|
|
# _df = _df.replace('NaT','').replace('NA','')
|
|
|
|
|
|
|
|
|
|
if r :
|
|
|
|
|
self.log(**{'action':'format','input':r})
|
|
|
|
@ -319,7 +335,7 @@ class Generator (Learner):
|
|
|
|
|
_store['context'] = 'write' #-- Just in case
|
|
|
|
|
if 'table' not in _store :
|
|
|
|
|
_store['table'] = self.info['from']
|
|
|
|
|
writer = transport.factory.instance(**_store)
|
|
|
|
|
|
|
|
|
|
N = 0
|
|
|
|
|
for _iodf in _candidates :
|
|
|
|
|
_df = self._df.copy()
|
|
|
|
@ -346,7 +362,9 @@ class Generator (Learner):
|
|
|
|
|
_schema = [{'name':_item.name,'type':_item.field_type} for _item in _schema]
|
|
|
|
|
_df = self.format(_df,_schema)
|
|
|
|
|
|
|
|
|
|
writer = transport.factory.instance(**_store)
|
|
|
|
|
writer.write(_df,schema=_schema)
|
|
|
|
|
# _df.to_csv('foo.csv')
|
|
|
|
|
|
|
|
|
|
self.log(**{'action':'write','input':{'rows':N,'candidates':len(_candidates)}})
|
|
|
|
|
class Shuffle(Generator):
|
|
|
|
|