|
|
|
@ -259,8 +259,6 @@ class Components :
|
|
|
|
|
_df[name] = _df[name].apply(lambda value: '' if str(value) == 'NaT' else str(value)[:10])
|
|
|
|
|
#_df[name] = _df[name].dt.date
|
|
|
|
|
# _df[name] = pd.to_datetime(_df[name].fillna(''),errors='coerce')
|
|
|
|
|
else:
|
|
|
|
|
print ([' ** ',name,_item['type']])
|
|
|
|
|
else:
|
|
|
|
|
if _item['type'] == 'INTEGER' :
|
|
|
|
|
_type = np.int64
|
|
|
|
@ -660,7 +658,7 @@ if __name__ == '__main__' :
|
|
|
|
|
# We need to harmonize the keys if any at all in this case we do this for shuffle or generate operations
|
|
|
|
|
#
|
|
|
|
|
print (['finalize' in SYS_ARGS, ('generate' in SYS_ARGS or 'shuffle' in SYS_ARGS) ])
|
|
|
|
|
if 'finalize' in SYS_ARGS or ('generate' in SYS_ARGS or 'shuffle' in SYS_ARGS) :
|
|
|
|
|
if 'autopilot' in SYS_ARGS or 'finalize' in SYS_ARGS or ('generate' in SYS_ARGS or 'shuffle' in SYS_ARGS) :
|
|
|
|
|
#
|
|
|
|
|
# We should pull all the primary keys and regenerate them in order to insure some form of consistency
|
|
|
|
|
#
|
|
|
|
|