bg fix : approximation

dev
Steve L. Nyemba 4 years ago
parent fc7b694d02
commit 12d7573ba8

@ -169,14 +169,24 @@ class Components :
# #
# @TODO: create bins? # @TODO: create bins?
r = np.random.dirichlet(values+.001) #-- dirichlet doesn't work on values with zeros r = np.random.dirichlet(values+.001) #-- dirichlet doesn't work on values with zeros
_sd = values[values > 0].std()
_me = values[values > 0].mean()
x = [] x = []
_type = values.dtype _type = values.dtype
for index in np.arange(values.size) : for index in np.arange(values.size) :
if np.random.choice([0,1],1)[0] : if np.random.choice([0,1],1)[0] :
value = values[index] + (values[index] * r[index]) value = values[index] + (values[index] * r[index])
else : else :
value = values[index] - (values[index] * r[index]) value = values[index] - (values[index] * r[index])
#
# randomly shifting the measurements
if np.random.choice([0,1],1)[0] and _me > _sd:
if np.random.choice([0,1],1)[0] :
value = value * np.divide(_me,_sd)
else:
value = value + (np.divide(_me,_sd))
value = int(value) if _type == int else np.round(value,2) value = int(value) if _type == int else np.round(value,2)
x.append( value) x.append( value)
np.random.shuffle(x) np.random.shuffle(x)
@ -305,7 +315,7 @@ class Components :
if real_df[_col].unique().size > 0 : if real_df[_col].unique().size > 0 :
_df[_col] = self.approximate(real_df[_col]) _df[_col] = self.approximate(real_df[_col].values)
_approx[_col] = { _approx[_col] = {
"io":{"min":_df[_col].min().astype(float),"max":_df[_col].max().astype(float),"mean":_df[_col].mean().astype(float),"sd":_df[_col].values.std().astype(float),"missing": _df[_col].where(_df[_col] == -1).dropna().count().astype(float),"zeros":_df[_col].where(_df[_col] == 0).dropna().count().astype(float)}, "io":{"min":_df[_col].min().astype(float),"max":_df[_col].max().astype(float),"mean":_df[_col].mean().astype(float),"sd":_df[_col].values.std().astype(float),"missing": _df[_col].where(_df[_col] == -1).dropna().count().astype(float),"zeros":_df[_col].where(_df[_col] == 0).dropna().count().astype(float)},
"real":{"min":real_df[_col].min().astype(float),"max":real_df[_col].max().astype(float),"mean":real_df[_col].mean().astype(float),"sd":real_df[_col].values.std().astype(float),"missing": real_df[_col].where(_df[_col] == -1).dropna().count().astype(float),"zeros":real_df[_col].where(_df[_col] == 0).dropna().count().astype(float)} "real":{"min":real_df[_col].min().astype(float),"max":real_df[_col].max().astype(float),"mean":real_df[_col].mean().astype(float),"sd":real_df[_col].values.std().astype(float),"missing": real_df[_col].where(_df[_col] == -1).dropna().count().astype(float),"zeros":real_df[_col].where(_df[_col] == 0).dropna().count().astype(float)}

Loading…
Cancel
Save