| 
						
						
							
								
							
						
						
					 | 
					 | 
					@ -397,17 +397,13 @@ class Train (GNet):
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                labels_placeholder = tf.compat.v1.placeholder(shape=self._LABEL.shape, dtype=tf.float32)
 | 
					 | 
					 | 
					 | 
					                labels_placeholder = tf.compat.v1.placeholder(shape=self._LABEL.shape, dtype=tf.float32)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                dataset = tf.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
 | 
					 | 
					 | 
					 | 
					                dataset = tf.data.Dataset.from_tensor_slices((features_placeholder, labels_placeholder))
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                dataset = dataset.repeat(10000)
 | 
					 | 
					 | 
					 | 
					                dataset = dataset.repeat(10000)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                dataset = dataset.batch(batch_size=self.BATCHSIZE_PER_GPU)
 | 
					 | 
					 | 
					 | 
					                dataset = dataset.batch(batch_size=3000)
 | 
				
			
			
				
				
			
		
	
		
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                dataset = dataset.prefetch(1)
 | 
					 | 
					 | 
					 | 
					                dataset = dataset.prefetch(1)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                # iterator = dataset.make_initializable_iterator()
 | 
					 | 
					 | 
					 | 
					                # iterator = dataset.make_initializable_iterator()
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                iterator = tf.compat.v1.data.make_initializable_iterator(dataset)
 | 
					 | 
					 | 
					 | 
					                iterator = tf.compat.v1.data.make_initializable_iterator(dataset)
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                # next_element = iterator.get_next()
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                # init_op = iterator.initializer
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                return iterator, features_placeholder, labels_placeholder
 | 
					 | 
					 | 
					 | 
					                return iterator, features_placeholder, labels_placeholder
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        
 | 
					 | 
					 | 
					 | 
					        
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        def network(self,**args):
 | 
					 | 
					 | 
					 | 
					        def network(self,**args):
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					        # def graph(stage, opt):
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                # global_step = tf.get_variable(stage+'_step', [], initializer=tf.constant_initializer(0), trainable=False)
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                stage   = args['stage']
 | 
					 | 
					 | 
					 | 
					                stage   = args['stage']
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                opt             = args['opt']
 | 
					 | 
					 | 
					 | 
					                opt             = args['opt']
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                tower_grads = []
 | 
					 | 
					 | 
					 | 
					                tower_grads = []
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
							
								
							
						
						
							
								
							
						
						
					 | 
					 | 
					@ -540,8 +536,6 @@ class Predict(GNet):
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                # The code below will insure we have some acceptable cardinal relationships between id and synthetic values
 | 
					 | 
					 | 
					 | 
					                                # The code below will insure we have some acceptable cardinal relationships between id and synthetic values
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                #
 | 
					 | 
					 | 
					 | 
					                                #
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                df =  ( pd.DataFrame(np.round(f).astype(np.int32)))
 | 
					 | 
					 | 
					 | 
					                                df =  ( pd.DataFrame(np.round(f).astype(np.int32)))
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                print (df.head())
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                print ()
 | 
					 | 
					 | 
					 | 
					 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                p = 0 not in df.sum(axis=1).values
 | 
					 | 
					 | 
					 | 
					                                p = 0 not in df.sum(axis=1).values
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                
 | 
					 | 
					 | 
					 | 
					                                
 | 
				
			
			
		
	
		
		
			
				
					
					 | 
					 | 
					 | 
					                                if      p:
 | 
					 | 
					 | 
					 | 
					                                if      p:
 | 
				
			
			
		
	
	
		
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
					 | 
					
 
 |