|
|
|
@ -64,7 +64,7 @@ class Learner(Process):
|
|
|
|
|
# self.logpath= _args['logpath'] if 'logpath' in _args else 'logs'
|
|
|
|
|
# sel.max_epoc
|
|
|
|
|
def log(self,**_args):
|
|
|
|
|
self.lock.acquire()
|
|
|
|
|
# self.lock.acquire()
|
|
|
|
|
try:
|
|
|
|
|
logger = transport.factory.instance(**self.store['logger']) if 'logger' in self.store else transport.factory.instance(provider='console',context='write',lock=True)
|
|
|
|
|
_args = dict({'ndx':self.ndx,'module':self.name,'table':self.info['from'],'info':self.info['context'],**_args})
|
|
|
|
@ -78,7 +78,8 @@ class Learner(Process):
|
|
|
|
|
print (e)
|
|
|
|
|
pass
|
|
|
|
|
finally:
|
|
|
|
|
self.lock.release()
|
|
|
|
|
# self.lock.release()
|
|
|
|
|
pass
|
|
|
|
|
def get_schema(self):
|
|
|
|
|
if self.store['source']['provider'] != 'bigquery' :
|
|
|
|
|
return [{'name':self._df.dtypes.index.tolist()[i],'type':self._df.dtypes.astype(str).tolist()[i]}for i in range(self._df.dtypes.shape[0])]
|
|
|
|
@ -222,7 +223,7 @@ class Generator (Learner):
|
|
|
|
|
values[index] = values[index].astype(_type)
|
|
|
|
|
x += values.tolist()
|
|
|
|
|
if x :
|
|
|
|
|
_log['input']['diff_pct'] = 100 * (1 - np.divide( (_df[name].dropna() == x).sum(),_df[name].dropna().size))
|
|
|
|
|
_log['input']['identical_percentage'] = 100 * (1 - np.divide( (_df[name].dropna() == x).sum(),_df[name].dropna().size))
|
|
|
|
|
_df[name] = x #np.array(x,dtype=np.int64) if 'int' in _type else np.arry(x,dtype=np.float64)
|
|
|
|
|
|
|
|
|
|
self.log(**_log)
|
|
|
|
@ -243,14 +244,15 @@ class Generator (Learner):
|
|
|
|
|
day = np.random.randint(1,_end)
|
|
|
|
|
|
|
|
|
|
#-- synthetic date
|
|
|
|
|
_date = datetime(year=year,month=month,day=day)
|
|
|
|
|
FORMAT = '%Y-%m-%d'
|
|
|
|
|
if 'format' in self.info and 'field' in _args and _args['field'] in self.info['format']:
|
|
|
|
|
_date = datetime(year=year,month=month,day=day) #,minute=0,hour=0,second=0)
|
|
|
|
|
FORMAT = '%Y-%d-%m'
|
|
|
|
|
_name = _args['field'] if 'field' in _args else None
|
|
|
|
|
if 'format' in self.info and _name in self.info['format']:
|
|
|
|
|
_name = _args['field']
|
|
|
|
|
FORMAT = self.info['format'][_name]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# print ([_name,FORMAT, _date.strftime(FORMAT)])
|
|
|
|
|
r = []
|
|
|
|
|
if offset :
|
|
|
|
|
r = [_date.strftime(FORMAT)]
|
|
|
|
@ -277,7 +279,7 @@ class Generator (Learner):
|
|
|
|
|
r[name] = FORMAT
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
_df[name] = pd.to_datetime(_df[name], format=FORMAT).astype(str) #.astype('datetime64[ns]')
|
|
|
|
|
_df[name] = pd.to_datetime(_df[name], format=FORMAT).astype('datetime64[ns]')
|
|
|
|
|
if r :
|
|
|
|
|
self.log(**{'action':'format','input':r})
|
|
|
|
|
return _df
|
|
|
|
@ -314,6 +316,7 @@ class Generator (Learner):
|
|
|
|
|
_schema = self.get_schema()
|
|
|
|
|
_schema = [{'name':_item.name,'type':_item.field_type} for _item in _schema]
|
|
|
|
|
_df = self.format(_df,_schema)
|
|
|
|
|
|
|
|
|
|
writer.write(_df,schema=_schema)
|
|
|
|
|
|
|
|
|
|
self.log(**{'action':'write','input':{'rows':N,'candidates':len(_candidates)}})
|
|
|
|
|