You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
307 lines
8.3 KiB
Python
307 lines
8.3 KiB
Python
"""
|
|
This file is intended to perfom certain machine learning tasks based on numpy
|
|
We are trying to keep it lean that's why no sklearn involved yet
|
|
|
|
@TODO:
|
|
Create factory method for the learners implemented here
|
|
Improve preconditions (size of the dataset, labels)
|
|
"""
|
|
from __future__ import division
|
|
import numpy as np
|
|
|
|
class ML:
|
|
@staticmethod
|
|
def Filter (attr,value,data) :
|
|
#
|
|
# @TODO: Make sure this approach works across all transport classes
|
|
# We may have a potential issue of how the data is stored ... it may not scale
|
|
#
|
|
value = ML.CleanupName(value)
|
|
#return [item[0] for item in data if item and attr in item[0] and item[0][attr] == value]
|
|
#return [[item for item in row if item[attr] == value][0] for row in data]
|
|
#
|
|
# We are making the filtering more rescillient, i.e if an item doesn't exist we don't have to throw an exception
|
|
# This is why we expanded the loops ... fully expressive but rescilient
|
|
#
|
|
r = []
|
|
for row in data :
|
|
if isinstance(row,list) :
|
|
for item in row :
|
|
|
|
if attr in item and item[attr] == value:
|
|
r.append(item)
|
|
else:
|
|
#
|
|
# We are dealing with a vector of objects
|
|
#
|
|
if attr in row and row[attr] == value:
|
|
r.append(row)
|
|
|
|
return r
|
|
@staticmethod
|
|
def Extract(lattr,data):
|
|
if isinstance(lattr,basestring):
|
|
lattr = [lattr]
|
|
return [[row[id] for id in lattr] for row in data]
|
|
@staticmethod
|
|
def CleanupName(value) :
|
|
return value.replace('$','').replace('.+','')
|
|
@staticmethod
|
|
def distribution(xo,lock,scale=False) :
|
|
|
|
d = []
|
|
m = {}
|
|
if scale :
|
|
xu = np.mean(xo)
|
|
sd = np.sqrt(np.var(xo))
|
|
for xi in xo :
|
|
value = round(xi,2)
|
|
if scale :
|
|
value = round((value - xu)/sd,2)
|
|
id = str(value)
|
|
lock.acquire()
|
|
if id in m :
|
|
index = m[id]
|
|
d[index][1] += 1
|
|
else:
|
|
m[id] = len(d)
|
|
d.append([value,1])
|
|
lock.release()
|
|
del m
|
|
return d
|
|
|
|
"""
|
|
Implements a multivariate anomaly detection
|
|
@TODO: determine computationally determine epsilon
|
|
"""
|
|
class AnomalyDetection:
|
|
def __init__(self):
|
|
pass
|
|
def split(self,data,index=-1,threshold=0.65) :
|
|
N = len(data)
|
|
# if N < LIMIT:
|
|
# return None
|
|
|
|
end = int(N*threshold)
|
|
train = data[:end]
|
|
test = data[end:]
|
|
|
|
return {"train":train,"test":test}
|
|
|
|
"""
|
|
|
|
@param key field name by which the data will be filtered
|
|
@param value field value for the filter
|
|
@param features features to be used in the analysis
|
|
@param labels used to assess performance
|
|
@TODO: Map/Reduce does a good job at filtering
|
|
"""
|
|
def learn(self,data,key,value,features,label):
|
|
|
|
|
|
if len(data) < 10:
|
|
return None
|
|
xo = ML.Filter(key,value,data)
|
|
if len(xo) < 10 :
|
|
return None
|
|
# attr = conf['features']
|
|
# label= conf['label']
|
|
|
|
yo= ML.Extract([label['name']],xo)
|
|
xo = ML.Extract(features,xo)
|
|
yo = self.getLabel(yo,label)
|
|
#
|
|
# @TODO: Insure this can be finetuned, training size matters for learning. It's not obvious to define upfront
|
|
#
|
|
xo = self.split(xo)
|
|
yo = self.split(yo)
|
|
p = self.gParameters(xo['train'])
|
|
has_cov = np.linalg.det(p['cov']) if p else False #-- making sure the matrix is invertible
|
|
if xo['train'] and has_cov :
|
|
E = 0.001
|
|
ACCEPTABLE_FSCORE = 0.6
|
|
fscore = 0
|
|
#
|
|
# We need to find an appropriate epsilon for the predictions
|
|
# The appropriate epsilon is one that yields an f-score [0.5,1[
|
|
#
|
|
|
|
__operf__ = None
|
|
perf = None
|
|
for i in range(0,10):
|
|
Epsilon = E + (2*E*i)
|
|
|
|
if p is None :
|
|
return None
|
|
#
|
|
# At this point we've got enough data for the parameters
|
|
# We should try to fine tune epsilon for better results
|
|
#
|
|
|
|
px = self.gPx(p['mean'],p['cov'],xo['test'],Epsilon)
|
|
|
|
|
|
__operf__ = self.gPerformance(px,yo['test'])
|
|
|
|
if __operf__['fscore'] == 1 :
|
|
continue
|
|
if perf is None :
|
|
perf = __operf__
|
|
elif perf['fscore'] < __operf__['fscore'] and __operf__['fscore'] > ACCEPTABLE_FSCORE :
|
|
perf = __operf__
|
|
perf['epsilon'] = Epsilon
|
|
#
|
|
# At this point we are assuming we came out of the whole thing with an acceptable performance
|
|
# The understanding is that error drives performance thus we reject fscore==1
|
|
#
|
|
|
|
if perf and perf['fscore'] > ACCEPTABLE_FSCORE :
|
|
return {"label":value,"parameters":p,"performance":perf}
|
|
else:
|
|
return None
|
|
return None
|
|
"""
|
|
This function determines if the preconditions for learning are met
|
|
For that parameters are passed to the function
|
|
p
|
|
"""
|
|
def canLearn(self,p) :
|
|
pass
|
|
def getLabel(self,yo,label_conf):
|
|
return [ int(len(set(item) & set(label_conf["1"]))>0) for item in yo ]
|
|
|
|
|
|
"""
|
|
This function will compute the probability density function given a particular event/set of events
|
|
The return value is [px,yo]
|
|
@pre xu.shape[0] == sigma[0] == sigma[1]
|
|
"""
|
|
def gPx(self,xu,sigma,data,EPSILON=0.01):
|
|
n = len(data[0])
|
|
|
|
r = []
|
|
a = (2*(np.pi)**(n/2))*np.linalg.det(sigma)**0.5
|
|
# EPSILON = np.float64(EPSILON)
|
|
test = np.array(data)
|
|
for row in test:
|
|
row = np.array(row)
|
|
d = np.matrix(row - xu)
|
|
d.shape = (n,1)
|
|
|
|
b = np.exp((-0.5*np.transpose(d)) * (np.linalg.inv(sigma)*d))
|
|
|
|
px = float(b/a)
|
|
r.append([px,int(px < EPSILON)])
|
|
return r
|
|
"""
|
|
This function uses stored learnt information to predict on raw data
|
|
In this case it will determin if we have an anomaly or not
|
|
@param xo raw observations (matrix)
|
|
@param info stored information about this
|
|
"""
|
|
def predict(self,xo,info):
|
|
|
|
xo = ML.Extract(info['features'],xo)
|
|
|
|
if not xo :
|
|
return None
|
|
|
|
sigma = info['parameters']['cov']
|
|
xu = info['parameters']['mean']
|
|
epsilon = info['performance']['epsilon']
|
|
|
|
return self.gPx(xu,sigma,xo,epsilon)
|
|
"""
|
|
This function computes performance metrics i.e precision, recall and f-score
|
|
for details visit https://en.wikipedia.org/wiki/Precision_and_recall
|
|
|
|
"""
|
|
def gPerformance(self,test,labels) :
|
|
N = len(test)
|
|
tp = 0 # true positive
|
|
fp = 0 # false positive
|
|
fn = 0 # false negative
|
|
tn = 0 # true negative
|
|
for i in range(0,N):
|
|
tp += 1 if (test[i][1]==labels[i] and test[i][1] == 1) else 0
|
|
fp += 1 if (test[i][1] != labels[i] and test[i][1] == 1) else 0
|
|
fn += 1 if (test[i][1] != labels[i] and test[i][1] == 0) else 0
|
|
tn += 1 if (test[i][1] == labels[i] and test[i][1] == 0) else 0
|
|
precision = tp / (tp + fp) if tp + fp > 0 else 1
|
|
recall = tp / (tp + fn) if tp + fp > 0 else 1
|
|
|
|
fscore = (2 * precision * recall)/ ((precision + recall) if (precision + recall) > 0 else 1)
|
|
return {"precision":precision,"recall":recall,"fscore":fscore}
|
|
|
|
"""
|
|
This function returns gaussian parameters i.e means and covariance
|
|
The information will be used to compute probabilities
|
|
"""
|
|
def gParameters(self,train) :
|
|
|
|
n = len(train[0])
|
|
m = np.transpose(np.array(train))
|
|
|
|
u = np.array([ np.mean(m[i][:]) for i in range(0,n)])
|
|
if np.sum(u) == 0:
|
|
return None
|
|
r = np.array([ np.sqrt(np.var(m[i,:])) for i in range(0,n)])
|
|
#
|
|
# Before we normalize the data we must insure there's is some level of movement in this application
|
|
# A lack of movement suggests we may not bave enough information to do anything
|
|
#
|
|
if 0 in r :
|
|
return None
|
|
#
|
|
#-- Normalizing the matrix then we will compute covariance matrix
|
|
#
|
|
|
|
m = np.array([ (m[i,:] - u[i])/r[i] for i in range(0,n)])
|
|
sigma = np.cov(m)
|
|
sigma = [ list(row) for row in sigma]
|
|
return {"cov":sigma,"mean":list(u)}
|
|
|
|
class AnalyzeAnomaly(AnomalyDetection):
|
|
def __init__(self):
|
|
AnomalyDetection.__init__(self)
|
|
"""
|
|
This analysis function will include a predicted status because an anomaly can either be
|
|
- A downtime i.e end of day
|
|
- A spike and thus a potential imminent crash
|
|
@param xo matrix of variables
|
|
@param info information about what was learnt
|
|
"""
|
|
def predict(self,xo,info):
|
|
x = xo[len(xo)-1]
|
|
r = AnomalyDetection.predict(self,[x],info)
|
|
#
|
|
# In order to determine what the anomaly is we compute the slope (idle or crash)
|
|
# The slope is computed using the covariance / variance of features
|
|
#
|
|
if r is not None:
|
|
N = len(info['features'])
|
|
xy = ML.Extract(info['features'],xo)
|
|
xy = np.array(xy)
|
|
|
|
vxy= np.array([ np.var(xy[:,i]) for i in range(0,N)])
|
|
cxy=np.array(info['parameters']['cov'])
|
|
#cxy=np.cov(np.transpose(xy))
|
|
if np.sum(vxy) == 0:
|
|
vxy = cxy
|
|
|
|
alpha = cxy/vxy
|
|
|
|
|
|
|
|
r = {"anomaly":r[0][1],"slope":list(alpha[:,0])}
|
|
|
|
return r
|
|
class Regression:
|
|
parameters = {}
|
|
@staticmethod
|
|
def predict(xo):
|
|
pass
|
|
|
|
def __init__(self,config):
|
|
pass
|