You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

85 lines
2.4 KiB
Python

"""
This file encapsulates a class that is intended to perform learning
"""
from __future__ import division
import numpy as np
from threading import Thread,RLock
from utils.transport import *
from utils.ml import AnomalyDetection,ML
from utils.params import PARAMS
import time
"""
This class is intended to apply anomaly detection to various areas of learning
The areas of learning that will be skipped are :
['_id','_rev','learn'] ...
@TODO:
- Find a way to perform dimensionality reduction if need be
"""
class Anomalies(Thread) :
def __init__(self,lock):
Thread.__init__(self)
path = PARAMS['path']
self.name = self.__class__.__name__.lower()
if os.path.exists(path) :
f = open(path)
self.config = json.loads(f.read())
f.close()
#
# Initializing data store & factory class
#
self.id = self.config['id']
self.apps = self.config['procs'] if 'procs' in self.config else []
self.rclass = self.config['store']['class']['read']
self.wclass = self.config['store']['class']['write']
self.rw_args = self.config['store']['args']
self.factory = DataSourceFactory()
self.quit = False
self.lock = lock
def format(self,stream):
pass
def stop(self):
self.quit = True
def run(self):
DELAY = self.config['delay'] * 60
reader = self.factory.instance(type=self.rclass,args=self.rw_args)
data = reader.read()
key = 'apps'
rdata = data[key]
features = ['memory_usage','cpu_usage']
yo = {"1":["running"],"name":"status"}
while self.quit == False :
print ' *** ',self.name, ' ' , str(datetime.today())
for app in self.apps:
print '\t',app,str(datetime.today()),' ** ',app
logs = ML.Filter('label',app,rdata)
if logs :
handler = AnomalyDetection()
value = handler.learn(logs,'label',app,features,yo)
if value is not None:
value = dict(value,**{"features":features})
value = dict({"id":self.id},**value)
#r[id][app] = value
self.lock.acquire()
writer = self.factory.instance(type=self.wclass,args=self.rw_args)
writer.write(label='learn',row=value)
self.lock.release()
#
if 'MONITOR_CONFIG_PATH' in os.environ :
break
time.sleep(DELAY)
print ' *** Exiting ',self.name.replace('a','A')
class Regression(Thread):
def __init__(self,params):
pass
if __name__ == '__main__' :
lock = RLock()
thread = Anomalies(lock)
thread.start()