You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
185 lines
5.0 KiB
Python
185 lines
5.0 KiB
Python
"""
|
|
This file is intended to perfom certain machine learning tasks based on numpy
|
|
We are trying to keep it lean that's why no sklearn involved yet
|
|
|
|
@TODO:
|
|
Create factory method for the learners implemented here
|
|
Improve preconditions (size of the dataset, labels)
|
|
"""
|
|
from __future__ import division
|
|
import numpy as np
|
|
|
|
class ML:
|
|
@staticmethod
|
|
def Filter (attr,value,data) :
|
|
#
|
|
# @TODO: Make sure this approach works across all transport classes
|
|
# We may have a potential issue of how the data is stored ... it may not scale
|
|
#
|
|
|
|
#return [item[0] for item in data if item and attr in item[0] and item[0][attr] == value]
|
|
return [[item for item in row if item[attr] == value] for row in data]
|
|
@staticmethod
|
|
def Extract(lattr,data):
|
|
if isinstance(lattr,basestring):
|
|
lattr = [lattr]
|
|
return [[row[id] for id in lattr] for row in data]
|
|
|
|
|
|
"""
|
|
Implements a multivariate anomaly detection
|
|
@TODO: determine computationally determine epsilon
|
|
"""
|
|
class AnomalyDetection:
|
|
|
|
def split(self,data,index=-1,threshold=0.8) :
|
|
N = len(data)
|
|
# if N < LIMIT:
|
|
# return None
|
|
|
|
end = int(N*threshold)
|
|
train = data[:end]
|
|
test = data[end:]
|
|
|
|
return {"train":train,"test":test}
|
|
|
|
"""
|
|
|
|
@param key field name by which the data will be filtered
|
|
@param value field value for the filter
|
|
@param features features to be used in the analysis
|
|
@param labels used to assess performance
|
|
@TODO: Map/Reduce does a good job at filtering
|
|
"""
|
|
def learn(self,data,key,value,features,label):
|
|
xo = ML.Filter(key,value,data)
|
|
print key,value, len(xo)
|
|
|
|
if not xo or len(xo) < 100:
|
|
return None
|
|
|
|
#if len(xo) < 100 :
|
|
#return None
|
|
# attr = conf['features']
|
|
# label= conf['label']
|
|
|
|
yo= ML.Extract([label['name']],xo)
|
|
xo = ML.Extract(features,xo)
|
|
yo = self.getLabel(yo,label)
|
|
|
|
xo = self.split(xo)
|
|
yo = self.split(yo)
|
|
|
|
if xo['train'] :
|
|
E = 0.01
|
|
fscore = 0
|
|
for i in range(0,10):
|
|
Epsilon = E + (2*E*i)
|
|
p = self.gParameters(xo['train'])
|
|
if p is None :
|
|
return None
|
|
px = self.gPx(p['mean'],p['cov'],xo['test'],Epsilon)
|
|
|
|
perf = self.gPerformance(px,yo['test'])
|
|
if fscore == 0 :
|
|
fscore = perf['fscore']
|
|
elif perf['fscore'] > fscore and perf['fscore'] > 0.5 :
|
|
|
|
perf['epsilon'] = Epsilon
|
|
|
|
return {"label":value,"parameters":p,"performance":perf}
|
|
return None
|
|
def getLabel(self,yo,label_conf):
|
|
return [ int(len(set(item) & set(label_conf["1"]))>0) for item in yo ]
|
|
|
|
|
|
"""
|
|
This function will compute the probability density function given a particular event/set of events
|
|
The return value is [px,yo]
|
|
@pre xu.shape[0] == sigma[0] == sigma[1]
|
|
"""
|
|
def gPx(self,xu,sigma,data,EPSILON=0.01):
|
|
n = len(data[0])
|
|
|
|
r = []
|
|
a = (2*(np.pi)**(n/2))*np.linalg.det(sigma)**0.5
|
|
# EPSILON = np.float64(EPSILON)
|
|
test = np.array(data)
|
|
for row in test:
|
|
row = np.array(row)
|
|
d = np.matrix(row - xu)
|
|
d.shape = (n,1)
|
|
b = np.exp((-0.5*np.transpose(d)) * (np.linalg.inv(sigma)*d))
|
|
|
|
px = float(b/a)
|
|
r.append([px,int(px < EPSILON)])
|
|
return r
|
|
"""
|
|
This function uses stored learnt information to predict on raw data
|
|
In this case it will determin if we have an anomaly or not
|
|
@param xo raw observations (matrix)
|
|
@param info stored information about this
|
|
"""
|
|
def predict(self,xo,info):
|
|
|
|
xo = ML.Extract(info['features'],xo)
|
|
|
|
if not xo :
|
|
return None
|
|
|
|
sigma = info['parameters']['cov']
|
|
xu = info['parameters']['mean']
|
|
epsilon = info['performance']['epsilon']
|
|
return self.gPx(xu,sigma,xo,epsilon)
|
|
"""
|
|
This function computes performance metrics i.e precision, recall and f-score
|
|
for details visit https://en.wikipedia.org/wiki/Precision_and_recall
|
|
|
|
"""
|
|
def gPerformance(self,test,labels) :
|
|
N = len(test)
|
|
tp = 0 # true positive
|
|
fp = 0 # false positive
|
|
fn = 0 # false negative
|
|
tn = 0 # true negative
|
|
for i in range(0,N):
|
|
tp += 1 if (test[i][1]==labels[i] and test[i][1] == 1) else 0
|
|
fp += 1 if (test[i][1] != labels[i] and test[i][1] == 1) else 0
|
|
fn += 1 if (test[i][1] != labels[i] and test[i][1] == 0) else 0
|
|
tn += 1 if (test[i][1] == labels[i] and test[i][1] == 0) else 0
|
|
precision = tp / (tp + fp) if tp + fp > 0 else 1
|
|
recall = tp / (tp + fn) if tp + fp > 0 else 1
|
|
fscore = (2 * precision * recall)/ (precision + recall)
|
|
return {"precision":precision,"recall":recall,"fscore":fscore}
|
|
|
|
"""
|
|
This function returns gaussian parameters i.e means and covariance
|
|
The information will be used to compute probabilities
|
|
"""
|
|
def gParameters(self,train) :
|
|
|
|
n = len(train[0])
|
|
m = np.transpose(np.array(train))
|
|
|
|
u = np.array([ np.mean(m[i][:]) for i in range(0,n)])
|
|
if np.sum(u) == 0:
|
|
return None
|
|
r = np.array([ np.sqrt(np.var(m[i,:])) for i in range(0,n)])
|
|
#
|
|
#-- Normalizing the matrix then we will compute covariance matrix
|
|
#
|
|
m = np.array([ (m[i,:] - u[i])/r[i] for i in range(0,n)])
|
|
sigma = np.cov(m)
|
|
sigma = [ list(row) for row in sigma]
|
|
return {"cov":sigma,"mean":list(u)}
|
|
|
|
|
|
class Regression:
|
|
parameters = {}
|
|
@staticmethod
|
|
def predict(xo):
|
|
pass
|
|
|
|
def __init__(self,config):
|
|
pass
|