You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
182 lines
4.2 KiB
Python
182 lines
4.2 KiB
Python
"""
|
|
This is a RESTful interface implemented using Flask micro framework.
|
|
The API is driven by configuration that is organized in terms of the monitoring classes
|
|
|
|
The API is both restful and websocket/socketio enabled.
|
|
|
|
We designed the classes to be reusable (and powered by labels):
|
|
'monitoring-type':
|
|
'class':'<class-name>'
|
|
'config':<labeled-class-specific-configuration>'
|
|
"""
|
|
|
|
from flask import Flask, session, request, redirect, Response
|
|
from flask.templating import render_template
|
|
|
|
from flask_session import Session
|
|
import time
|
|
import sys
|
|
import os
|
|
import json
|
|
import re
|
|
import monitor
|
|
import Queue
|
|
from utils.transport import *
|
|
from utils.workers import ThreadManager, Factory
|
|
from utils.ml import ML,AnomalyDetection
|
|
import utils.params as SYS_ARGS
|
|
import atexit
|
|
|
|
app = Flask(__name__)
|
|
app.config['SECRET_KEY'] = '!h8-[0v8]247-4-360'
|
|
#app.secret_key = 'A0Zr98j/3yX R~XHH!jmN]LWX=?RT'
|
|
|
|
PARAMS = SYS_ARGS.PARAMS
|
|
f = open(PARAMS['path'])
|
|
CONFIG = json.loads(f.read())
|
|
f.close()
|
|
|
|
#
|
|
#
|
|
#from threading import Thread, RLock
|
|
p = CONFIG['store']['args']
|
|
class_read = CONFIG['store']['class']['read']
|
|
class_write= CONFIG['store']['class']['write']
|
|
factory = DataSourceFactory()
|
|
gReader = factory.instance(type=class_read,args=p)
|
|
|
|
atexit.register(ThreadManager.stop)
|
|
@app.route('/get/<id>')
|
|
def procs(id):
|
|
try:
|
|
gReader = factory.instance(type=class_read,args=p)
|
|
d = gReader.read()
|
|
|
|
r = {}
|
|
for label in d :
|
|
if label not in ['learn'] :
|
|
index = len(d[label]) - 1
|
|
r[label] = d[label][index]
|
|
#for row in r[label] :
|
|
#yo = ML.Extract(['status'],row)
|
|
#xo = ML.Extract(['cpu_usage','memory_usage'],row)
|
|
|
|
except Exception, e:
|
|
print e
|
|
r = []
|
|
return json.dumps(r)
|
|
|
|
"""
|
|
This function/endpoint will assess n-virtual environments and return the results
|
|
@TODO: Should this be stored for future mining (I don't think so but could be wrong)
|
|
"""
|
|
@app.route('/sandbox')
|
|
def sandbox():
|
|
global CONFIG
|
|
|
|
if 'sandbox' in CONFIG['monitor']:
|
|
#handler = HANDLERS['sandbox']['class']
|
|
#conf = HANDLERS['sandbox']['config']
|
|
r = []
|
|
p = Factory.instance('sandbox',CONFIG)
|
|
handler = p['class']
|
|
conf = p['config']
|
|
|
|
for id in conf:
|
|
handler.init(conf[id])
|
|
r.append (dict(handler.composite(),**{"label":id}))
|
|
else:
|
|
|
|
r = []
|
|
|
|
|
|
return json.dumps(r)
|
|
@app.route('/trends')
|
|
def trends ():
|
|
id = request.args.get('id')
|
|
app = request.args.get('app').strip()
|
|
p = CONFIG['store']['args']
|
|
class_read = CONFIG['store']['class']['read']
|
|
|
|
|
|
gReader = factory.instance(type=class_read,args=p)
|
|
|
|
r = gReader.read()
|
|
if id in r:
|
|
r = r[id] #--matrix
|
|
series = []
|
|
|
|
for row in r:
|
|
|
|
series += [item for item in row if str(item['label'])== app]
|
|
if len(series) > 12 :
|
|
beg = len(series) - 13
|
|
series = series[beg:]
|
|
return json.dumps(series)
|
|
else:
|
|
return "[]"
|
|
@app.route('/download',methods=['POST'])
|
|
def requirements():
|
|
stream = request.form['missing']
|
|
|
|
stream = "\n".join(json.loads(stream))
|
|
headers = {"content-disposition":"attachment; filename=requirements.txt"}
|
|
return Response(stream,mimetype='text/plain',headers=headers)
|
|
@app.route('/dashboard')
|
|
def dashboard():
|
|
context = PARAMS['context']
|
|
return render_template('dashboard.html',context=context)
|
|
|
|
"""
|
|
This function is designed to trigger learning for anomaly detection
|
|
@TODO: forward this to a socket i.e non-blocking socket
|
|
"""
|
|
@app.route('/learn')
|
|
def learn():
|
|
global CONFIG
|
|
p = CONFIG['store']['args']
|
|
class_read = CONFIG['store']['class']['read']
|
|
gReader = factory.instance(type=class_read,args=p)
|
|
d = gReader.read()
|
|
if 'learn' in d :
|
|
logs = d['learn']
|
|
del d['learn']
|
|
else :
|
|
logs = []
|
|
r = []
|
|
if 'id' in request.args:
|
|
id = request.args['id']
|
|
d = d[id]
|
|
print CONFIG['monitor']['processes']['config'][id]
|
|
print (apps)
|
|
|
|
|
|
#apps = list(set(ML.Extract(['label'],d)))
|
|
p = AnomalyDetection()
|
|
#for row in d :
|
|
#xo = ML.Filter('label',app,d)
|
|
#info = ML.Filter('label',app,logs)
|
|
#value = p.predict(xo,info)
|
|
#print app,value
|
|
#if value is not None:
|
|
# r.append(value)
|
|
print r
|
|
return json.dumps("[]")
|
|
|
|
|
|
|
|
@app.route('/anomalies/status')
|
|
def anomalies_status():
|
|
pass
|
|
|
|
@app.route('/anomalies/get')
|
|
def anomalies_get():
|
|
pass
|
|
|
|
if __name__== '__main__':
|
|
|
|
#ThreadManager.start(CONFIG)
|
|
app.run(host='0.0.0.0',debug=True,threaded=True)
|
|
|
|
|