import numpy as np m = [[0.0, 4.5], [0.0, 4.5], [11.6, 4.4], [12.2, 4.3], [1.4, 3.9], [1.4, 3.9], [2.5, 3.8], [0.1, 3.8], [0.5, 5.1], [0.7, 5.2], [0.7, 5.1], [0.0, 4.6], [0.0, 4.6]] m = np.transpose(np.array(m)) xu_ = np.mean(m[1,:]) yu_ = np.mean(m[0,:]) xr_ = np.sqrt(np.var(m[0,:])) yr_ = np.sqrt(np.var(m[1,:])) # # -- normalizing the matrix before computing covariance # mn = np.array([list( (m[0,:]-xu_)/xr_),list( (m[1,:]-yu_)/yr_)]) cx = np.cov(mn) n = m.shape[0] x = np.array([2.5,3.1]) u = np.array([xu_,yu_]) d = np.matrix(x - u) d.shape = (n,1) a = (2*(np.pi)**(n/2))*np.linalg.det(cx)**0.5 b = np.exp(-0.5*np.transpose(d) * (cx**-1)*d) from scipy.stats import multivariate_normal xo= multivariate_normal.pdf(x,u,cx) yo= (b/a)[0,0] for row in np.transpose(m): print ",".join([str(value) for value in row]) #-- We are ready to perform anomaly detection ...