{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Writing to SQLite3+\n",
    "\n",
    "The requirements to get started are minimal (actually none). The cell below creates a dataframe that will be stored within SQLite 3+"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "2.0.4\n"
     ]
    }
   ],
   "source": [
    "#\n",
    "# Writing to PostgreSQL database\n",
    "#\n",
    "import transport\n",
    "from transport import providers\n",
    "import pandas as pd\n",
    "_data = pd.DataFrame({\"name\":['James Bond','Steve Rogers','Steve Nyemba'],'age':[55,150,44]})\n",
    "sqw = transport.get.writer(provider=providers.SQLITE,database='/home/steve/demo.db3',table='friends')\n",
    "sqw.write(_data,if_exists='replace') #-- default is append\n",
    "print (transport.__version__)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "#### Reading from SQLite3+\n",
    "\n",
    "The cell below reads the data that has been written by the cell above and computes the average age within a PostreSQL (simple query). \n",
    "\n",
    "- Basic read of the designated table (friends) created above\n",
    "- Execute an aggregate SQL against the table\n",
    "\n",
    "\n",
    "**NOTE**\n",
    "\n",
    "By design **read** object are separated from **write** objects in order to avoid accidental writes to the database.\n",
    "Read objects are created with **transport.get.reader** whereas write objects are created with **transport.get.writer**"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "           name  age\n",
      "0    James Bond   55\n",
      "1  Steve Rogers  150\n",
      "2  Steve Nyemba   44\n",
      "--------- STATISTICS ------------\n",
      "   _counts  AVG(age)\n",
      "0        3      83.0\n"
     ]
    }
   ],
   "source": [
    "\n",
    "import transport\n",
    "from transport import providers\n",
    "sqr = transport.get.reader(provider=providers.SQLITE,database='/home/steve/demo.db3',table='friends')\n",
    "_df = sqr.read()\n",
    "_query = 'SELECT COUNT(*) _counts, AVG(age) from friends'\n",
    "_sdf = sqr.read(sql=_query)\n",
    "print (_df)\n",
    "print ('--------- STATISTICS ------------')\n",
    "print (_sdf)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "An **auth-file** is a file that contains database parameters used to access the database. \n",
    "For code in shared environments, we recommend \n",
    "\n",
    "1. Having the **auth-file** stored on disk \n",
    "2. and the location of the file is set to an environment variable.\n",
    "\n",
    "To generate a template of the **auth-file** open the **file generator wizard** found at visit https://healthcareio.the-phi.com/data-transport"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "{\n",
    "    \"provider\":\"sqlite\",\n",
    "    \"database\":\"/home/steve/demo.db3\",\"table\":\"friends\"\n",
    "}\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.9.7"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}