adding warehouse support (iceberg)

v2.4
Steve Nyemba 3 months ago
parent 2df926da12
commit 07be81bace

@ -1,6 +1,6 @@
__app_name__ = 'data-transport'
__author__ = 'The Phi Technology'
__version__= '2.2.6'
__version__= '2.4.0'
__email__ = "info@the-phi.com"
__license__=f"""
Copyright 2010 - 2024, Steve L. Nyemba
@ -15,7 +15,9 @@ THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR I
__whatsnew__=f"""version {__version__}, focuses on collaborative environments like jupyter-base servers (apache zeppelin; jupyter notebook, jupyterlab, jupyterhub)
1. simpler syntax to create readers/writers
2. auth-file registry that can be referenced using a label
3. duckdb support
1. support for apache iceberg data warehouse using spark
2. Improved ETL & performance
3. bug fixes: mongodb
"""

@ -18,7 +18,7 @@ Source Code is available under MIT License:
"""
import numpy as np
from transport import sql, nosql, cloud, other
from transport import sql, nosql, cloud, other, warehouse
import pandas as pd
import json
import os
@ -33,7 +33,7 @@ PROVIDERS = {}
def init():
global PROVIDERS
for _module in [cloud,sql,nosql,other] :
for _module in [cloud,sql,nosql,other,warehouse] :
for _provider_name in dir(_module) :
if _provider_name.startswith('__') or _provider_name == 'common':
continue

@ -44,7 +44,8 @@ PGSQL = POSTGRESQL
AWS_S3 = 's3'
RABBIT = RABBITMQ
ICEBERG='iceberg'
APACHE_ICEBERG = 'iceberg'
# QLISTENER = 'qlistener'

@ -0,0 +1,7 @@
"""
This namespace/package is intended to handle read/writes against data warehouse solutions like :
- apache iceberg
- clickhouse (...)
"""
from . import iceberg

@ -0,0 +1,98 @@
from pyspark.sql import SparkSession
import copy
class Iceberg :
def __init__(self,**_args):
"""
providing catalog meta information (you must get this from apache iceberg)
"""
#
# @TODO:
# Make arrangements for additional configuration elements
#
self._session = SparkSession.builder.getOrCreate()
self._catalog = self._session.catalog
self._table = _args['table'] if 'table' in _args else None
if 'catalog' in _args :
#
# Let us set the default catalog
self._catalog.setCurrentCatalog(_args['catalog'])
else:
# No current catalog has been set ...
pass
if 'database' in _args :
self._database = _args['database']
self._catalog.setCurrentDatabase(self._database)
else:
#
# Should we set the default as the first one if available ?
#
pass
self._catalogName = self._catalog.currentCatalog()
self._databaseName = self._catalog.currentDatabase()
def meta (self,**_args) :
"""
This function should return the schema of a table (only)
"""
_schema = []
try:
_tableName = self._getPrefix(**_args) + f".{_args['table']}"
print (_tableName)
_tmp = self._session.table(_tableName).schema
_schema = _tmp.jsonValue()['fields']
for _item in _schema :
del _item['nullable'],_item['metadata']
except Exception as e:
pass
return _schema
def _getPrefix (self,**_args):
_catName = self._catalogName if 'catalog' not in _args else _args['catalog']
_datName = self._databaseName if 'database' not in _args else _args['database']
return '.'.join([_catName,_datName])
def has (self,**_args):
try:
_prefix = self._getPrefix(**_args)
if _prefix.endswith('.') :
return False
return _args['table'] in [_item.name for _item in self._catalog.listTables(_prefix)]
except Exception as e:
print (e)
return False
def apply(self,sql):
pass
class Reader(Iceberg) :
def __init__(self,**_args):
super().__init__(**_args)
def read(self,**_args):
_table = self._table
_prefix = self._getPrefix(**_args)
if 'table' in _args or _table:
_table = _args['table'] if 'table' in _args else _table
_table = _prefix + f'.{_table}'
return self._session.table(_table).toPandas()
else:
sql = _args['sql']
return self._session.sql(sql).toPandas()
pass
class Writer (Iceberg):
"""
Writing data to an Apache Iceberg data warehouse (using pyspark)
"""
def __init__(self,**_args):
super().__init__(**_args)
self._mode = 'append'
self._table = None if 'table' not in _args else _args['table']
def write(self,_data,**_args):
_prefix = self._getPrefix(**_args)
if 'table' not in _args and not self._table :
raise Exception (f"Table Name should be specified for catalog/database {_prefix}")
rdd = self._session.createDataFrame(_data)
_mode = self._mode if 'mode' not in _args else _args['mode']
_table = self._table if 'table' not in _args else _args['table']
_table = f'{_prefix}.{_table}'
rdd.write.format('iceberg').mode(self._mode).save(_table)
Loading…
Cancel
Save