You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

325 lines
13 KiB
Python

"""
Health Information Privacy Lab
Brad. Malin, Weiyi Xia, Steve L. Nyemba
This framework computes re-identification risk of a dataset assuming the data being shared can be loaded into a dataframe (pandas)
The framework will compute the following risk measures:
- marketer
- prosecutor
- pitman
References :
https://www.scb.se/contentassets/ff271eeeca694f47ae99b942de61df83/applying-pitmans-sampling-formula-to-microdata-disclosure-risk-assessment.pdf
This framework integrates pandas (for now) as an extension and can be used in two modes :
Experimental mode
Here the assumption is that we are not sure of the attributes to be disclosed, the framework will explore a variety of combinations and associate risk measures every random combinations
Evaluation mode
The evaluation mode assumes the set of attributes given are known and thus will evaluate risk for a subset of attributes.
features :
- determine viable fields (quantifiable in terms of uniqueness). This is a way to identify fields that can act as identifiers.
- explore and evaluate risk of a sample dataset against a known population dataset
- explore and evaluate risk on a sample dataset
Usage:
from pandas_risk import *
mydataframe = pd.DataFrame('/myfile.csv')
resp = mydataframe.risk.evaluate(id=<name of patient field>,num_runs=<number of runs>,cols=[])
resp = mydataframe.risk.explore(id=<name of patient field>,num_runs=<number of runs>,cols=[])
@TODO:
- Provide a selected number of fields and risk will be computed for those fields.
- include journalist risk
"""
import pandas as pd
import numpy as np
import logging
import json
from datetime import datetime
import sys
from itertools import combinations
@pd.api.extensions.register_dataframe_accessor("risk")
class deid :
"""
This class is a deidentification class that will compute risk (marketer, prosecutor) given a pandas dataframe
"""
def __init__(self,df):
self._df = df.fillna(' ')
#
# Let's get the distribution of the values so we know what how unique the fields are
#
values = df.apply(lambda col: col.unique().size / df.shape[0])
self._dinfo = dict(zip(df.columns.tolist(),values))
def explore(self,**args):
"""
This function will perform experimentation by performing a random policies (combinations of attributes)
This function is intended to explore a variety of policies and evaluate their associated risk.
:pop|sample data-frame with population or sample reference
:field_count number of fields to randomly select
:strict if set the field_count is exact otherwise field_count is range from 2-field_count
:num_runs number of runs (by default 5)
"""
pop= args['pop'] if 'pop' in args else None
if 'pop_size' in args :
pop_size = np.float64(args['pop_size'])
else:
pop_size = -1
#
# Policies will be generated with a number of runs
#
RUNS = args['num_runs'] if 'num_runs' in args else 5
sample = args['sample'] if 'sample' in args else pd.DataFrame(self._df)
k = sample.columns.size if 'field_count' not in args else int(args['field_count']) +1
#
# remove fields that are unique, they function as identifiers
#
if 'id' in args :
id = args['id']
columns = list(set(sample.columns.tolist()) - set([id]))
else:
columns = sample.columns.tolist()
# If columns are not specified we can derive them from self._dinfo
# given the distribution all fields that are < 1 will be accounted for
# columns = args['cols'] if 'cols' in args else [key for key in self._dinfo if self._dinfo[key] < 1]
o = pd.DataFrame()
columns = [key for key in self._dinfo if self._dinfo[key] < 1]
_policy_count = 2 if 'policy_count' not in args else int(args['policy_count'])
_policies = []
_index = 0
for size in np.arange(2,len(columns)) :
p = list(combinations(columns,size))
p = (np.array(p)[ np.random.choice( len(p), _policy_count)].tolist())
flag = 'Policy_'+str(_index)
_index += 1
for cols in p :
r = self.evaluate(sample=sample,cols=cols,flag = flag)
p = pd.DataFrame(1*sample.columns.isin(cols)).T
p.columns = sample.columns
o = pd.concat([o,r.join(p)])
# for i in np.arange(RUNS):
# if 'strict' not in args or ('strict' in args and args['strict'] is False):
# n = np.random.randint(2,k)
# else:
# n = args['field_count']
# cols = np.random.choice(columns,n,replace=False).tolist()
# params = {'sample':sample,'cols':cols}
# if pop is not None :
# params['pop'] = pop
# if pop_size > 0 :
# params['pop_size'] = pop_size
# r = self.evaluate(**params)
# #
# # let's put the policy in place
# p = pd.DataFrame(1*sample.columns.isin(cols)).T
# p.columns = sample.columns
# # o = o.append(r.join(p))
# o = pd.concat([o,r.join(p)])
o.index = np.arange(o.shape[0]).astype(np.int64)
return o
def evaluate(self, **args):
"""
This function has the ability to evaluate risk associated with either a population or a sample dataset
:sample sample dataset
:pop population dataset
:cols list of columns of interest or policies
:flag user provided flag for the context of the evaluation
"""
if 'sample' in args :
sample = pd.DataFrame(args['sample'])
else:
sample = pd.DataFrame(self._df)
if not args or 'cols' not in args:
# cols = sample.columns.tolist()
cols = [key for key in self._dinfo if self._dinfo[key] < 1]
elif args and 'cols' in args:
cols = args['cols']
#
#
flag = 'UNFLAGGED' if 'flag' not in args else args['flag']
#
# @TODO: auto select the columns i.e removing the columns that will have the effect of an identifier
#
# if 'population' in args :
# pop = pd.DataFrame(args['population'])
r = {"flag":flag}
# if sample :
handle_sample = Sample()
xi = sample.groupby(cols,as_index=False).count().values
handle_sample.set('groups',xi)
if 'pop_size' in args :
pop_size = np.float64(args['pop_size'])
else:
pop_size = -1
#
#-- The following conditional line is to address the labels that will be returned
# @TODO: Find a more elegant way of doing this.
#
if 'pop' in args :
label_market = 'sample marketer'
label_prosec = 'sample prosecutor'
label_groupN = 'sample group count'
label_unique = 'sample journalist' #'sample unique ratio'
# r['sample marketer'] = handle_sample.marketer()
# r['sample prosecutor'] = handle_sample.prosecutor()
# r['sample unique ratio'] = handle_sample.unique_ratio()
# r['sample group count'] = xi.size
# r['sample group count'] = len(xi)
else:
label_market = 'marketer'
label_prosec = 'prosecutor'
label_groupN = 'group count'
label_unique = 'journalist' #'unique ratio'
# r['marketer'] = handle_sample.marketer()
# r['prosecutor'] = handle_sample.prosecutor()
# r['unique ratio'] = handle_sample.unique_ratio()
# r['group count'] = xi.size
# r['group count'] = len(xi)
if pop_size > 0 :
handle_sample.set('pop_size',pop_size)
r['pitman risk'] = handle_sample.pitman()
r[label_market] = handle_sample.marketer()
r[label_unique] = handle_sample.unique_ratio()
r[label_prosec] = handle_sample.prosecutor()
r[label_groupN] = len(xi)
if 'pop' in args :
xi = pd.DataFrame({"sample_group_size":sample.groupby(cols,as_index=False).count()}).reset_index()
yi = pd.DataFrame({"population_group_size":args['pop'].groupby(cols,as_index=False).size()}).reset_index()
merged_groups = pd.merge(xi,yi,on=cols,how='inner')
handle_population= Population()
handle_population.set('merged_groups',merged_groups)
r['pop. marketer'] = handle_population.marketer()
r['pitman risk'] = handle_population.pitman()
r['pop. group size'] = np.unique(yi.population_group_size).size
#
# At this point we have both columns for either sample,population or both
#
r['field count'] = len(cols)
return pd.DataFrame([r])
class Risk :
"""
This class is an abstraction of how we chose to structure risk computation i.e in 2 sub classes:
- Sample computes risk associated with a sample dataset only
- Population computes risk associated with a population
"""
def __init__(self):
self.cache = {}
def set(self,key,value):
if id not in self.cache :
self.cache[id] = {}
self.cache[key] = value
class Sample(Risk):
"""
This class will compute risk for the sample dataset: the marketer and prosecutor risk are computed by default.
This class can optionally add pitman risk if the population size is known.
"""
def __init__(self):
Risk.__init__(self)
def marketer(self):
"""
computing marketer risk for sample dataset
"""
groups = self.cache['groups']
# group_count = groups.size
# row_count = groups.sum()
group_count = len(groups)
row_count = np.sum([_g[-1] for _g in groups])
return group_count / np.float64(row_count)
def prosecutor(self):
"""
The prosecutor risk consists in determining 1 over the smallest group size
It identifies if there is at least one record that is unique
"""
groups = self.cache['groups']
_min = np.min([_g[-1] for _g in groups])
# return 1 / np.float64(groups.min())
return 1/ np.float64(_min)
def unique_ratio(self):
groups = self.cache['groups']
# row_count = groups.sum()
row_count = np.sum([_g[-1] for _g in groups])
# return groups[groups == 1].sum() / np.float64(row_count)
values = [_g[-1] for _g in groups if _g[-1] == 1]
return np.sum(values) / np.float64(row_count)
def pitman(self):
"""
This function will approximate pitman de-identification risk based on pitman sampling
"""
groups = self.cache['groups']
si = groups[groups == 1].size
# u = groups.size
u = len(groups)
alpha = np.divide(si , np.float64(u) )
row_count = np.sum([_g[-1] for _g in groups])
# f = np.divide(groups.sum(), np.float64(self.cache['pop_size']))
f = np.divide(row_count, np.float64(self.cache['pop_size']))
return np.power(f,1-alpha)
class Population(Sample):
"""
This class will compute risk for datasets that have population information or datasets associated with them.
This computation includes pitman risk (it requires minimal information about population)
"""
def __init__(self,**args):
Sample.__init__(self)
def set(self,key,value):
Sample.set(self,key,value)
if key == 'merged_groups' :
Sample.set(self,'pop_size',np.float64(value.population_group_size.sum()) )
Sample.set(self,'groups',value.sample_group_size)
"""
This class will measure risk and account for the existance of a population
:merged_groups {sample_group_size, population_group_size} is a merged dataset with group sizes of both population and sample
"""
def marketer(self):
"""
This function requires
"""
r = self.cache['merged_groups']
sample_row_count = r.sample_group_size.sum()
#
# @TODO : make sure the above line is size (not sum)
# sample_row_count = r.sample_group_size.size
return r.apply(lambda row: (row.sample_group_size / np.float64(row.population_group_size)) /np.float64(sample_row_count) ,axis=1).sum()