{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "df = pd.read_csv('../src/out/risk_xoi.csv')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
Unnamed: 0group_countrow_countmarketerprosecutorfield_count
00432512790808020.005469110
1017824004790808020.225390128
2043538084790808020.550552138
3064042788790808020.809840146
406866070790808020.086823117
\n", "
" ], "text/plain": [ " Unnamed: 0 group_count row_count marketer prosecutor field_count\n", "0 0 432512 79080802 0.005469 1 10\n", "1 0 17824004 79080802 0.225390 1 28\n", "2 0 43538084 79080802 0.550552 1 38\n", "3 0 64042788 79080802 0.809840 1 46\n", "4 0 6866070 79080802 0.086823 1 17" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "df.head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "compiled = df.groupby('field_count')[['field_count','marketer','prosecutor']].mean()\n", "figure = compiled[['marketer','prosecutor']].plot.line().get_figure()" ] }, { "cell_type": "markdown", "metadata": { "variables": { " figure ": "" } }, "source": [ "# Dataset Used\n", "---\n", "\n", "We performed joins against all the tables from all-of-us and truncated records while randomly selecting on record per every join. As a result we have roughly a dataset of about **80 million** records and about **5000** distinct patients.\n", "\n", "## Expriment Design\n", "---\n", "\n", "We compute both marketer and prosecutor risk computation while randomly selecting the number of attributes out of **111**. This selection is between ***2*** and **111** attributes. The number of maximum number of attributes that can be computed at any time is **64** : limitations of Google's Big-query. We performed **500** runs.\n", "\n", "## Results\n", "---\n", "\n", "The results show the prosecutor risk is unchanging perhaps as an artifact of the number of runs **500** or the dataset curation: The joins we performed. The prosecutor risk shows there is at least one record that vulnerable.\n", "\n", "The marketer risk seems to increase as the number of randomly selected attributes increases as a general trend. \n", "\n", "{{ figure }} \n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.10" }, "varInspector": { "cols": { "lenName": 16, "lenType": 16, "lenVar": 40 }, "kernels_config": { "python": { "delete_cmd_postfix": "", "delete_cmd_prefix": "del ", "library": "var_list.py", "varRefreshCmd": "print(var_dic_list())" }, "r": { "delete_cmd_postfix": ") ", "delete_cmd_prefix": "rm(", "library": "var_list.r", "varRefreshCmd": "cat(var_dic_list()) " } }, "types_to_exclude": [ "module", "function", "builtin_function_or_method", "instance", "_Feature" ], "window_display": false } }, "nbformat": 4, "nbformat_minor": 2 }