{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import pandas as pd\n", "import numpy as np\n", "df = pd.read_csv('../src/out/risk_xoi.csv')" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | Unnamed: 0 | \n", "group_count | \n", "row_count | \n", "marketer | \n", "prosecutor | \n", "field_count | \n", "
---|---|---|---|---|---|---|
0 | \n", "0 | \n", "432512 | \n", "79080802 | \n", "0.005469 | \n", "1 | \n", "10 | \n", "
1 | \n", "0 | \n", "17824004 | \n", "79080802 | \n", "0.225390 | \n", "1 | \n", "28 | \n", "
2 | \n", "0 | \n", "43538084 | \n", "79080802 | \n", "0.550552 | \n", "1 | \n", "38 | \n", "
3 | \n", "0 | \n", "64042788 | \n", "79080802 | \n", "0.809840 | \n", "1 | \n", "46 | \n", "
4 | \n", "0 | \n", "6866070 | \n", "79080802 | \n", "0.086823 | \n", "1 | \n", "17 | \n", "