You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
176 lines
5.8 KiB
Python
176 lines
5.8 KiB
Python
"""
|
|
(c) 2019 Data Maker, hiplab.mc.vanderbilt.edu
|
|
version 1.0.0
|
|
|
|
This package serves as a proxy to the overall usage of the framework.
|
|
This package is designed to generate synthetic data from a dataset from an original dataset using deep learning techniques
|
|
|
|
@TODO:
|
|
- Make configurable GPU, EPOCHS
|
|
"""
|
|
import pandas as pd
|
|
import numpy as np
|
|
import data.gan as gan
|
|
from transport import factory
|
|
from data.bridge import Binary
|
|
import threading as thread
|
|
from data.maker import prepare
|
|
import copy
|
|
import os
|
|
import json
|
|
|
|
class ContinuousToDiscrete :
|
|
ROUND_UP = 2
|
|
@staticmethod
|
|
def binary(X,n=4) :
|
|
"""
|
|
This function will convert a continous stream of information into a variety a bit stream of bins
|
|
"""
|
|
values = np.array(X).astype(np.float32)
|
|
BOUNDS = ContinuousToDiscrete.bounds(values,n)
|
|
matrix = np.repeat(np.zeros(n),len(X)).reshape(len(X),n)
|
|
|
|
|
|
@staticmethod
|
|
def bounds(x,n):
|
|
# return np.array_split(x,n)
|
|
values = np.round(x,ContinuousToDiscrete.ROUND_UP)
|
|
return list(pd.cut(values,n).categories)
|
|
|
|
|
|
|
|
@staticmethod
|
|
def continuous(X,BIN_SIZE=4) :
|
|
"""
|
|
This function will approximate a binary vector given boundary information
|
|
:X binary matrix
|
|
:BIN_SIZE
|
|
"""
|
|
BOUNDS = ContinuousToDiscrete.bounds(X,BIN_SIZE)
|
|
|
|
values = []
|
|
# _BINARY= ContinuousToDiscrete.binary(X,BIN_SIZE)
|
|
# # # print (BOUNDS)
|
|
l = {}
|
|
for i in np.arange(len(X)): #value in X :
|
|
|
|
value = X[i]
|
|
|
|
for item in BOUNDS :
|
|
if value >= item.left and value <= item.right :
|
|
values += [np.round(np.random.uniform(item.left,item.right),ContinuousToDiscrete.ROUND_UP)]
|
|
break
|
|
# values += [ np.round(np.random.uniform(item.left,item.right),ContinuousToDiscrete.ROUND_UP) for item in BOUNDS if value >= item.left and value <= item.right ]
|
|
|
|
|
|
# # values = []
|
|
# for row in _BINARY :
|
|
# # ubound = BOUNDS[row.index(1)]
|
|
# index = np.where(row == 1)[0][0]
|
|
|
|
# ubound = BOUNDS[ index ].right
|
|
# lbound = BOUNDS[ index ].left
|
|
|
|
# x_ = np.round(np.random.uniform(lbound,ubound),ContinuousToDiscrete.ROUND_UP).astype(float)
|
|
# values.append(x_)
|
|
|
|
# lbound = ubound
|
|
|
|
# values = [np.random.uniform() for item in BOUNDS]
|
|
|
|
return values
|
|
|
|
|
|
def train (**_args):
|
|
"""
|
|
:params sql
|
|
:params store
|
|
"""
|
|
|
|
_inputhandler = prepare.Input(**_args)
|
|
values,_matrix = _inputhandler.convert()
|
|
args = {"real":_matrix,"context":_args['context']}
|
|
_map = {}
|
|
if 'store' in _args :
|
|
#
|
|
# This
|
|
|
|
args['store'] = copy.deepcopy(_args['store']['logs'])
|
|
args['store']['args']['doc'] = _args['context']
|
|
logger = factory.instance(**args['store'])
|
|
args['logger'] = logger
|
|
|
|
for key in _inputhandler._map :
|
|
beg = _inputhandler._map[key]['beg']
|
|
end = _inputhandler._map[key]['end']
|
|
values = _inputhandler._map[key]['values'].tolist()
|
|
_map[key] = {"beg":beg,"end":end,"values":np.array(values).astype(str).tolist()}
|
|
info = {"rows":_matrix.shape[0],"cols":_matrix.shape[1],"map":_map}
|
|
logger.write({"module":"gan-train","action":"data-prep","context":_args['context'],"input":_inputhandler._io})
|
|
|
|
args['logs'] = _args['logs'] if 'logs' in _args else 'logs'
|
|
args ['max_epochs'] = _args['max_epochs']
|
|
args['matrix_size'] = _matrix.shape[0]
|
|
args['batch_size'] = 2000
|
|
args['partition'] = 0 if 'partition' not in _args else _args['partition']
|
|
if 'gpu' in _args :
|
|
args['gpu'] = _args['gpu']
|
|
# os.environ['CUDA_VISIBLE_DEVICES'] = str(args['gpu']) if 'gpu' in args else '0'
|
|
|
|
trainer = gan.Train(**args)
|
|
#
|
|
# @TODO: Write the map.json in the output directory for the logs
|
|
#
|
|
f = open(os.sep.join([_args['logs'],'output',_args['context'],'map.json']),'w')
|
|
f.write(json.dumps(_map))
|
|
f.close()
|
|
|
|
trainer.apply()
|
|
pass
|
|
|
|
def get(**args):
|
|
"""
|
|
This function will restore a checkpoint from a persistant storage on to disk
|
|
"""
|
|
pass
|
|
def generate(**_args):
|
|
"""
|
|
This function will generate a set of records, before we must load the parameters needed
|
|
:param data
|
|
:param context
|
|
:param logs
|
|
"""
|
|
f = open(os.sep.join([_args['logs'],'output',_args['context'],'map.json']))
|
|
_map = json.loads(f.read())
|
|
f.close()
|
|
# if 'file' in _args :
|
|
# df = pd.read_csv(_args['file'])
|
|
# else:
|
|
# df = _args['data'] if not isinstance(_args['data'],str) else pd.read_csv(_args['data'])
|
|
args = {"context":_args['context'],"max_epochs":_args['max_epochs'],"candidates":_args['candidates']}
|
|
args['logs'] = _args['logs'] if 'logs' in _args else 'logs'
|
|
args ['max_epochs'] = _args['max_epochs']
|
|
# args['matrix_size'] = _matrix.shape[0]
|
|
args['batch_size'] = 2000
|
|
args['partition'] = 0 if 'partition' not in _args else _args['partition']
|
|
args['row_count'] = _args['data'].shape[0]
|
|
#
|
|
# @TODO: perhaps get the space of values here ... (not sure it's a good idea)
|
|
#
|
|
_args['map'] = _map
|
|
_inputhandler = prepare.Input(**_args)
|
|
values,_matrix = _inputhandler.convert()
|
|
args['values'] = np.array(values)
|
|
if 'gpu' in _args :
|
|
args['gpu'] = _args['gpu']
|
|
|
|
handler = gan.Predict (**args)
|
|
handler.load_meta(None)
|
|
#
|
|
# Let us now format the matrices by reverting them to a data-frame with values
|
|
#
|
|
|
|
candidates = handler.apply(candidates=args['candidates'])
|
|
return [_inputhandler.revert(matrix=_matrix) for _matrix in candidates]
|
|
|