|
|
|
@ -84,7 +84,7 @@ class Components :
|
|
|
|
|
# We ask the process to assume 1 gpu given the system number of GPU and that these tasks can run in parallel
|
|
|
|
|
#
|
|
|
|
|
if int(args['num_gpu']) > 1 :
|
|
|
|
|
_args['gpu'] = int(args['gpu']) if int(args['gpu']) < 8 else np.random.choice(np.arange(8)).astype(int)[0]
|
|
|
|
|
_args['gpu'] = int(args['gpu']) if int(args['gpu']) < 8 else np.random.choice(np.arange(8)).astype(int)
|
|
|
|
|
else:
|
|
|
|
|
_args['gpu'] = 0
|
|
|
|
|
_args['num_gpu'] = 1
|
|
|
|
@ -124,7 +124,7 @@ class Components :
|
|
|
|
|
_args['batch_size'] = int(args['batch_size'])
|
|
|
|
|
|
|
|
|
|
if int(args['num_gpu']) > 1 :
|
|
|
|
|
_args['gpu'] = int(args['gpu']) if int(args['gpu']) < 8 else np.random.choice(np.arange(8)).astype(int)[0]
|
|
|
|
|
_args['gpu'] = int(args['gpu']) if int(args['gpu']) < 8 else np.random.choice(np.arange(8)).astype(int)
|
|
|
|
|
else:
|
|
|
|
|
_args['gpu'] = 0
|
|
|
|
|
_args['num_gpu'] = 1
|
|
|
|
@ -215,7 +215,7 @@ class Components :
|
|
|
|
|
df = pd.DataFrame(info['data'])
|
|
|
|
|
args = info['args']
|
|
|
|
|
if args['num_gpu'] > 1 :
|
|
|
|
|
args['gpu'] = int(info['input']['partition']) if info['input']['partition'] < 8 else np.random.choice(np.arange(8),1).astype(int)[0]
|
|
|
|
|
args['gpu'] = int(info['input']['partition']) if info['input']['partition'] < 8 else np.random.choice(np.arange(8)).astype(int)
|
|
|
|
|
|
|
|
|
|
else:
|
|
|
|
|
args['gpu'] = 0
|
|
|
|
|