|
|
|
@ -142,10 +142,15 @@ class Components :
|
|
|
|
|
#
|
|
|
|
|
# We need to make sure that continuous columns are removed
|
|
|
|
|
if x_cols :
|
|
|
|
|
_args['data'] = df[list(set(df.columns) - set(x_cols))]
|
|
|
|
|
_args['data'] = _args['data'][list(set(df.columns) - set(x_cols))]
|
|
|
|
|
if 'gpu' in args :
|
|
|
|
|
_args['gpu'] = self.set_gpu(gpu=args['gpu'])
|
|
|
|
|
data.maker.train(**_args)
|
|
|
|
|
if df.shape[0] and df.shape[0] :
|
|
|
|
|
#
|
|
|
|
|
# We have a full blown matrix to be processed
|
|
|
|
|
data.maker.train(**_args)
|
|
|
|
|
else:
|
|
|
|
|
print ("... skipping training !!")
|
|
|
|
|
|
|
|
|
|
if 'autopilot' in ( list(args.keys())) :
|
|
|
|
|
|
|
|
|
@ -216,7 +221,7 @@ class Components :
|
|
|
|
|
|
|
|
|
|
_dc = pd.DataFrame()
|
|
|
|
|
# for mdf in df :
|
|
|
|
|
args['data'] = df
|
|
|
|
|
args['data'] = df.copy()
|
|
|
|
|
#
|
|
|
|
|
# The columns that are continuous should also be skipped because they don't need to be synthesied (like-that)
|
|
|
|
|
if 'continuous' in args :
|
|
|
|
@ -232,7 +237,7 @@ class Components :
|
|
|
|
|
# @TODO: Abstract this !!
|
|
|
|
|
#
|
|
|
|
|
if x_cols :
|
|
|
|
|
args['data'] = df[list(set(df.columns) - set(x_cols))]
|
|
|
|
|
args['data'] = args['data'][list(set(df.columns) - set(x_cols))]
|
|
|
|
|
|
|
|
|
|
args['candidates'] = 1 if 'candidates' not in args else int(args['candidates'])
|
|
|
|
|
if 'gpu' in args :
|
|
|
|
|