| 
						
						
							
								
							
						
						
					 | 
				
				 | 
				 | 
				
					@ -39,7 +39,7 @@ class Reader:
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							"""
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							m = {',':[],'\t':[],'|':[],'\x3A':[]} 
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							delim = m.keys()
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							delim = list(m.keys())
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							for row in sample:
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
								for xchar in delim:
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
									if row.split(xchar) > 1:	
 | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				 | 
				
					@ -53,9 +53,9 @@ class Reader:
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							# The delimiter with the smallest variance, provided the mean is greater than 1
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							# This would be troublesome if there many broken records sampled
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							#
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							m = {id: np.var(m[id]) for id in m.keys() if m[id] != [] and int(np.mean(m[id]))>1}
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							index = m.values().index( min(m.values()))
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							xchar = m.keys()[index]
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							m = {id: np.var(m[id]) for id in list(m.keys()) if m[id] != [] and int(np.mean(m[id]))>1}
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							index = list(m.values()).index( min(m.values()))
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							xchar = list(m.keys())[index]
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							return xchar
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
						def col_count(self,sample):
 | 
				
			
			
		
	
	
		
			
				
					| 
						
						
						
							
								
							
						
					 | 
				
				 | 
				 | 
				
					@ -76,8 +76,8 @@ class Reader:
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
									m[id] = 0
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
								m[id] = m[id] + 1
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							index = m.values().index( max(m.values()) )
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							ncols = int(m.keys()[index])
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							index = list(m.values()).index( max(m.values()) )
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							ncols = int(list(m.keys())[index])
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							
 | 
				
			
			
		
	
		
			
				
					 | 
					 | 
				
				 | 
				 | 
				
							return ncols;
 | 
				
			
			
		
	
	
		
			
				
					| 
						
							
								
							
						
						
						
					 | 
				
				 | 
				 | 
				
					
 
 |